Author: Mitsumasa Iwamoto
Publisher: World Scientific
ISBN: 9814322482
Category : Technology & Engineering
Languages : en
Pages : 387
Book Description
This book treats the important issues of interface control in organic devices in a wide range of applications that cover from electronics, displays, and sensors to biorelated devices. This book is composed of three parts: Part 1, Nanoscale interface; Part 2, Molecular electronics; Part 3, Polymer electronics.
Nanoscale Interface for Organic Electronics
Nanoscale Organic Electronics
Handbook of Nanoscale Optics and Electronics
Author:
Publisher: Academic Press
ISBN: 0123751799
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
With the increasing demand for smaller, faster, and more highly integrated optical and electronic devices, as well as extremely sensitive detectors for biomedical and environmental applications, a field called nano-optics or nano-photonics/electronics is emerging – studying the many promising optical properties of nanostructures. Like nanotechnology itself, it is a rapidly evolving and changing field – but because of strong research activity in optical communication and related devices, combined with the intensive work on nanotechnology, nano-optics is shaping up fast to be a field with a promising future. This book serves as a one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments. - Provides overview of the field of Nano-optics/photonics and electronics, detailing practical examples of photonic technology in a wide range of applications - Discusses photonic systems and devices with mathematical rigor precise enough for design purposes - A one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments
Publisher: Academic Press
ISBN: 0123751799
Category : Technology & Engineering
Languages : en
Pages : 402
Book Description
With the increasing demand for smaller, faster, and more highly integrated optical and electronic devices, as well as extremely sensitive detectors for biomedical and environmental applications, a field called nano-optics or nano-photonics/electronics is emerging – studying the many promising optical properties of nanostructures. Like nanotechnology itself, it is a rapidly evolving and changing field – but because of strong research activity in optical communication and related devices, combined with the intensive work on nanotechnology, nano-optics is shaping up fast to be a field with a promising future. This book serves as a one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments. - Provides overview of the field of Nano-optics/photonics and electronics, detailing practical examples of photonic technology in a wide range of applications - Discusses photonic systems and devices with mathematical rigor precise enough for design purposes - A one-stop review of modern nano-optical/photonic and nano-electronic techniques, applications, and developments
Theoretical Chemistry for Advanced Nanomaterials
Author: Taku Onishi
Publisher: Springer Nature
ISBN: 9811500061
Category : Science
Languages : en
Pages : 547
Book Description
This book collects recent topics of theoretical chemistry for advanced nanomaterials from the points of view of both computational and experimental chemistry. It is written for computational and experimental chemists, including undergraduate students, who are working with advanced nanomaterials, where collaboration and interplay between computation and experiment are essential. After the general introduction of nanomaterials, several computational approaches are explained in Part II. Each chapter presents not only calculation methods but also concrete calculation results for advanced nanomaterials. Hydride ion conducting nanomaterials, high-k dielectric nanomaterials, and organic electronics are focused on. In Part III, the interplay between computational and experimental approaches is explained. The chapters show calculation results, combined with corresponding experimental data. Dimensionality of nanomaterials, electronic structure of oligomers and nanorods, carbon nanomaterials, and the electronic structure of a nanosized sandwich cluster is looked at carefully. In Part IV, functionality analysis is explained from the point of view of the experimental approach. The emphasis is on the mechanism of photoluminescence and hydrogen generation using silicon nanopowder, the superionic conducting mechanism of glass ceramics, nanoclusters formation on the surface of metal oxides, and the magnetic property of an organic one-dimensional nanochannel. Finally, forthcoming theoretical methods for excited states and quantum dynamics are introduced in Part V.
Publisher: Springer Nature
ISBN: 9811500061
Category : Science
Languages : en
Pages : 547
Book Description
This book collects recent topics of theoretical chemistry for advanced nanomaterials from the points of view of both computational and experimental chemistry. It is written for computational and experimental chemists, including undergraduate students, who are working with advanced nanomaterials, where collaboration and interplay between computation and experiment are essential. After the general introduction of nanomaterials, several computational approaches are explained in Part II. Each chapter presents not only calculation methods but also concrete calculation results for advanced nanomaterials. Hydride ion conducting nanomaterials, high-k dielectric nanomaterials, and organic electronics are focused on. In Part III, the interplay between computational and experimental approaches is explained. The chapters show calculation results, combined with corresponding experimental data. Dimensionality of nanomaterials, electronic structure of oligomers and nanorods, carbon nanomaterials, and the electronic structure of a nanosized sandwich cluster is looked at carefully. In Part IV, functionality analysis is explained from the point of view of the experimental approach. The emphasis is on the mechanism of photoluminescence and hydrogen generation using silicon nanopowder, the superionic conducting mechanism of glass ceramics, nanoclusters formation on the surface of metal oxides, and the magnetic property of an organic one-dimensional nanochannel. Finally, forthcoming theoretical methods for excited states and quantum dynamics are introduced in Part V.
Molecular Electronics
Author: Juan Carlos Cuevas
Publisher: World Scientific
ISBN: 9814282588
Category : Science
Languages : en
Pages : 724
Book Description
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Publisher: World Scientific
ISBN: 9814282588
Category : Science
Languages : en
Pages : 724
Book Description
This book provides a comprehensive overview of the rapidly developing field of molecular electronics. It focuses on our present understanding of the electrical conduction in single-molecule circuits and provides a thorough introduction to the experimental techniques and theoretical concepts. It will also constitute as the first textbook-like introduction to both the experiment and theory of electronic transport through single atoms and molecules. In this sense, this publication will prove invaluable to both researchers and students interested in the field of nanoelectronics and nanoscience in general. Molecular Electronics is self-contained and unified in its presentation. It may be used as a textbook on nanoelectronics by graduate students and advanced undergraduates studying physics and chemistry. In addition, included are previously unpublished material that will help researchers gain a deeper understanding into the basic concepts involved in the field of molecular electronics.
Electronic Processes in Organic Electronics
Author: Hisao Ishii
Publisher: Springer
ISBN: 4431552065
Category : Science
Languages : en
Pages : 427
Book Description
The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.
Publisher: Springer
ISBN: 4431552065
Category : Science
Languages : en
Pages : 427
Book Description
The book covers a variety of studies of organic semiconductors, from fundamental electronic states to device applications, including theoretical studies. Furthermore, innovative experimental techniques, e.g., ultrahigh sensitivity photoelectron spectroscopy, photoelectron yield spectroscopy, spin-resolved scanning tunneling microscopy (STM), and a material processing method with optical-vortex and polarization-vortex lasers, are introduced. As this book is intended to serve as a textbook for a graduate level course or as reference material for researchers in organic electronics and nanoscience from electronic states, fundamental science that is necessary to understand the research is described. It does not duplicate the books already written on organic electronics, but focuses mainly on electronic properties that arise from the nature of organic semiconductors (molecular solids). The new experimental methods introduced in this book are applicable to various materials (e.g., metals, inorganic and organic materials). Thus the book is also useful for experts working in physics, chemistry, and related engineering and industrial fields.
Organic Electronics II
Author: Hagen Klauk
Publisher: John Wiley & Sons
ISBN: 3527640223
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Once again authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective both broad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.
Publisher: John Wiley & Sons
ISBN: 3527640223
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Like its predecessor this book is devoted to the materials, manufacturing and applications aspects of organic thin-film transistors. Once again authored by the most renowned experts from this fascinating and fast-moving area of research, it offers a joint perspective both broad and in-depth on the latest developments in the areas of materials chemistry, transport physics, materials characterization, manufacturing technology, and circuit integration of organic transistors. With its many figures and detailed index, this book once again also serves as a ready reference.
Single Organic Nanoparticles
Author: Hiroshi Masuhara
Publisher: Springer Science & Business Media
ISBN: 3642555454
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Experts describe advanced techniques for the chemical synthesis of functional organic nanoparticles and propose new methods for the characterization and manipulation of single nanoparticles. Theoretical and experimental studies of the physical and chemical properties of organic particles, semiconductor particles and liquid droplets are reported. The text gives not only scientific details but also general and historical background, applications, and future perspectives. Lucid explanations of technical terms and concepts are included where necessary.
Publisher: Springer Science & Business Media
ISBN: 3642555454
Category : Technology & Engineering
Languages : en
Pages : 443
Book Description
Experts describe advanced techniques for the chemical synthesis of functional organic nanoparticles and propose new methods for the characterization and manipulation of single nanoparticles. Theoretical and experimental studies of the physical and chemical properties of organic particles, semiconductor particles and liquid droplets are reported. The text gives not only scientific details but also general and historical background, applications, and future perspectives. Lucid explanations of technical terms and concepts are included where necessary.
Organic and Molecular Electronics
Author: Michael C. Petty
Publisher: John Wiley & Sons
ISBN: 1118879287
Category : Technology & Engineering
Languages : en
Pages : 509
Book Description
An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.
Publisher: John Wiley & Sons
ISBN: 1118879287
Category : Technology & Engineering
Languages : en
Pages : 509
Book Description
An introduction to the interdisciplinary subject of molecular electronics, revised and updated The revised second edition of Organic and Molecular Electronics offers a guide to the fabrication and application of a wide range of electronic devices based around organic materials and low-cost technologies. Since the publication of the first edition, organic electronics has greatly progressed, as evidenced by the myriad companies that have been established to explore the new possibilities. The text contains an introduction into the physics and chemistry of organic materials, and includes a discussion of the means to process the materials into a form (in most cases, a thin film) where they can be exploited in electronic and optoelectronic devices. The text covers the areas of application and potential application that range from chemical and biochemical sensors to plastic light emitting displays. The updated second edition reflects the recent progress in both organic and molecular electronics and: Offers an accessible resource for a wide range of readers Contains a comprehensive text that covers topics including electrical conductivity, optical phenomena, electroactive organic compounds, tools for molecular electronics and much more Includes illustrative examples based on the most recent research Presents problems at the end of each chapter to help reinforce key points Written mainly for engineering students, Organic and Molecular Electronics: From Principles to Practice provides an updated introduction to the interdisciplinary subjects of organic electronics and molecular electronics with detailed examples of applications.
Molecular Nanoelectronics
Author: Mark A. Reed
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 424
Book Description
And Perspective 225 -- Acknowledgments 225 -- R eferences 225 -- Chapter 9. NANOPARTICLES: BUILDING BLOCKS -- For Functional Nanostructures -- Corey Radloff, Cristin E. Moran, Joseph B. Jackson, Naomi J Halas -- 1. Introduction 229 -- 2. Building Blocks 230 -- 2.1. Nonmetallic Nanoparticles 230 -- 2.2. Semiconductor Nanocrystals 235 -- 2.3. M etal N anoparticles 241 -- 3. Assembly and Deposition Methods 244 -- 3.1. N anoshells 244 -- 3.2. Two- and Three-Dimensional Nanoparticle Assemblies 247 -- 3.3. Single-Particle Trapping and Manipulation 256 -- 4. A pplications 258 -- 4.1. Quantum Dot Corporation 258 -- 4.2. Nanospectra L.L.P 258 -- 4.3. SurroMed Incorporated 259 -- R eferences 259 -- Chapter 10. MOLECULAR- AND NANOCRYSTAL-BASED -- Photovoltaics -- Laura A. Swafford, Sandra J. Rosenthal -- 1. Introduction 263 -- 2. p-n Junction Silicon Solar Cells 264 -- 3. Photosynthesis: Nature's Solar Cell 266 -- 4. Molecular- and Nanomaterial-Based Photovoltaics 267 -- 4.1. Schottky Photodiodes 267 -- 4.2. Sandwich Heterojunction Photovoltaics 277 -- 4.3. Bulk Heterojunction Photovoltaics 279 -- 5. Future Photovoltaics 284 -- 6. Concluding Remarks 286 -- Appendix: Photovoltaic Efficiencies 286 -- A .1. Lighting Conditions 286 -- A.2. Calculating Photovoltaic Efficiencies 287 -- Acknowledgments 287 -- R eferences 287 -- Chapter 11. ORGANIC THIN FILM TRANSISTORS -- Hagen Klauk, Thomas N. Jackson -- 1. Introduction 291 -- 2. Pushing the Limits 296 -- 3. Device Architectures 297 -- 4. Flexible Substrate Technology 297 -- 5. Gate Dielectrics 299 -- 6. Low-Cost Proc.
Publisher:
ISBN:
Category : Science
Languages : en
Pages : 424
Book Description
And Perspective 225 -- Acknowledgments 225 -- R eferences 225 -- Chapter 9. NANOPARTICLES: BUILDING BLOCKS -- For Functional Nanostructures -- Corey Radloff, Cristin E. Moran, Joseph B. Jackson, Naomi J Halas -- 1. Introduction 229 -- 2. Building Blocks 230 -- 2.1. Nonmetallic Nanoparticles 230 -- 2.2. Semiconductor Nanocrystals 235 -- 2.3. M etal N anoparticles 241 -- 3. Assembly and Deposition Methods 244 -- 3.1. N anoshells 244 -- 3.2. Two- and Three-Dimensional Nanoparticle Assemblies 247 -- 3.3. Single-Particle Trapping and Manipulation 256 -- 4. A pplications 258 -- 4.1. Quantum Dot Corporation 258 -- 4.2. Nanospectra L.L.P 258 -- 4.3. SurroMed Incorporated 259 -- R eferences 259 -- Chapter 10. MOLECULAR- AND NANOCRYSTAL-BASED -- Photovoltaics -- Laura A. Swafford, Sandra J. Rosenthal -- 1. Introduction 263 -- 2. p-n Junction Silicon Solar Cells 264 -- 3. Photosynthesis: Nature's Solar Cell 266 -- 4. Molecular- and Nanomaterial-Based Photovoltaics 267 -- 4.1. Schottky Photodiodes 267 -- 4.2. Sandwich Heterojunction Photovoltaics 277 -- 4.3. Bulk Heterojunction Photovoltaics 279 -- 5. Future Photovoltaics 284 -- 6. Concluding Remarks 286 -- Appendix: Photovoltaic Efficiencies 286 -- A .1. Lighting Conditions 286 -- A.2. Calculating Photovoltaic Efficiencies 287 -- Acknowledgments 287 -- R eferences 287 -- Chapter 11. ORGANIC THIN FILM TRANSISTORS -- Hagen Klauk, Thomas N. Jackson -- 1. Introduction 291 -- 2. Pushing the Limits 296 -- 3. Device Architectures 297 -- 4. Flexible Substrate Technology 297 -- 5. Gate Dielectrics 299 -- 6. Low-Cost Proc.