Nanoscale Liquid Interfaces PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nanoscale Liquid Interfaces PDF full book. Access full book title Nanoscale Liquid Interfaces by Thierry Ondarçuhu. Download full books in PDF and EPUB format.

Nanoscale Liquid Interfaces

Nanoscale Liquid Interfaces PDF Author: Thierry Ondarçuhu
Publisher: CRC Press
ISBN: 9814316458
Category : Science
Languages : en
Pages : 782

Book Description
This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid environment. The book proposes is a timely review of these various aspects. It is co-authored by 25 among the most prominent scientists in the field.

Nanoscale Liquid Interfaces

Nanoscale Liquid Interfaces PDF Author: Thierry Ondarçuhu
Publisher: CRC Press
ISBN: 9814316458
Category : Science
Languages : en
Pages : 782

Book Description
This book addresses the recent developments in the investigation and manipulation of liquids at the nanoscale. This new field has shown important breakthroughs on the basic understanding of physical mechanisms involving liquid interfaces, which led to applications in nanopatterning. It has also consequences in force microscopy imaging in liquid environment. The book proposes is a timely review of these various aspects. It is co-authored by 25 among the most prominent scientists in the field.

Nanoscale Probes of the Solid/Liquid Interface

Nanoscale Probes of the Solid/Liquid Interface PDF Author: Andrew A. Gewirth
Publisher: Springer Science & Business Media
ISBN: 9401584354
Category : Science
Languages : en
Pages : 340

Book Description
Nanoscale Probes of the Solid--Liquid Interface deals with the use of the scanning tunnelling microscope (STM) and related instrumentation to examine the phenomena occurring at the interface between solid and liquid. Scanning probe microscopy (the collective term for such instruments as the STM, the atomic force microscope and related instrumentation) allows detailed, real space atomic or lattice scale insight into surface structures, information which is ideally correlated with surface reactivity. The use of SPM methods is not restricted to ultrahigh vacuum: the STM and AFM have been used on samples immersed in solution or in ambient air, thus permitting a study of environmental effects on surfaces. At the solid--liquid interface the reactivity derives precisely from the presence of the solution and, in many cases, the application of an external potential. Topics covered in the present volume include: the advantages of studying the solid--liquid interface and the obtaining of additional information from probe measurements; interrelationships between probe tip, the interface and the tunnelling process; STM measurements on semiconductor surfaces; the scanning electrochemical microscope, AFM and the solid--liquid interface; surface X-ray scattering; cluster formation on graphite electrodes; Cu deposition on Au surfaces; macroscopic events following Cu deposition; deposition of small metallic clusters on carbon; overpotential deposition of metals; underpotential deposition; STM on nanoscale ceramic superlattices; reconstruction events on Au(ijk) surfaces; Au surface reconstructions; friction force measurements on graphite steps under potential control; and the biocompatibility of materials.

Nanoscale Thermal Transport at Solid -Liquid Interfaces

Nanoscale Thermal Transport at Solid -Liquid Interfaces PDF Author: Zhenbin Ge
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Heat and Mass Transfer of Water at Nanoscale Solid-liquid Interfaces

Heat and Mass Transfer of Water at Nanoscale Solid-liquid Interfaces PDF Author: Matteo Fasano
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Liquid Surfaces and Interfaces

Liquid Surfaces and Interfaces PDF Author: Peter S. Pershan
Publisher: Cambridge University Press
ISBN: 0521814014
Category : Science
Languages : en
Pages : 335

Book Description
A practical guide for graduate students and researchers on all aspects of x-ray scattering experiments on liquid surfaces and interfaces.

Nanoscale Electrochemistry

Nanoscale Electrochemistry PDF Author: Andrew J. Wain
Publisher: Elsevier
ISBN: 0128200561
Category : Technology & Engineering
Languages : en
Pages : 580

Book Description
Nanoscale Electrochemistry focuses on challenges and advances in electrochemical nanoscience at solid–liquid interfaces, highlighting the most prominent developments of the last decade. Nanotechnology has had a tremendous effect on the multidisciplinary field of electrochemistry, yielding new fundamental insights that have broadened our understanding of interfacial processes and stimulating new and diverse applications. The book begins with a tutorial chapter to introduce the principles of nanoscale electrochemical systems and emphasize their unique behavior compared with their macro/microscopic counterparts. Building on this, the following three chapters present analytical applications, such as sensing and electrochemical imaging, that are familiar to the traditional electrochemist but whose extension to the nanoscale is nontrivial and reveals new chemical information. The subsequent three chapters present exciting new electrochemical methodologies that are specific to the nanoscale, including "single entity"-based methods and surface-enhanced electrochemical spectroscopy. These techniques, now sufficiently mature for exposition, have paved the way for major developments in our understanding of solid–liquid interfaces and continue to push electrochemical analysis toward atomic-length scales. The final three chapters address the rich overlap between electrochemistry and nanomaterials science, highlighting notable applications in energy conversion and storage. This is an important reference for both academic and industrial researchers who are seeking to learn more about how nanoscale electrochemistry has developed in recent years. Outlines the major applications of nanoscale electrochemistry in energy storage, spectroscopy and biology Summarizes the major principles of nanoscale electrochemical systems, exploring how they differ from similar system types Discusses the major challenges of electrochemical analysis at the nanoscale

Nanoscale Characterization of Surfaces and Interfaces

Nanoscale Characterization of Surfaces and Interfaces PDF Author: N. John DiNardo
Publisher: Wiley-VCH
ISBN:
Category : Science
Languages : en
Pages : 184

Book Description
Topics include: STM, AFM, semiconductor surfaces and interfaces, insulators, layered compounds, charge density wave systems, superconductors, electrochemistry at liquid-solid interfaces, biological systems, metrological applications, nanoscale surface forces, nanotribology, and manipulation on the nanoscale.

Nanoscale Liquid-vapor Interfaces and Their Role in Microbubble Formation

Nanoscale Liquid-vapor Interfaces and Their Role in Microbubble Formation PDF Author: Jian-Gang Weng
Publisher:
ISBN:
Category :
Languages : en
Pages : 344

Book Description


Liquid Cell Electron Microscopy

Liquid Cell Electron Microscopy PDF Author: Frances M. Ross
Publisher: Cambridge University Press
ISBN: 1107116570
Category : Science
Languages : en
Pages : 529

Book Description
2.6.2 Electrodes for Electrochemistry

The Effect of Nanoscale Structure on Interfacial Energy

The Effect of Nanoscale Structure on Interfacial Energy PDF Author: Jeffrey James Kuna
Publisher:
ISBN:
Category :
Languages : en
Pages : 138

Book Description
Interfaces are ubiquitous in nature. From solidification fronts to the surfaces of biological cells, interfacial properties determine the interactions between a solid and a liquid. Interfaces, specifically liquid-solid interfaces, play important roles in many fields of science. In the field of biology, interfaces are fundamental in determining cell-cell interactions, protein folding behavior and assembly, and ligand binding. In chemistry, heterogeneous catalysts greatly increase reaction rates of reactions occurring at the interface. In materials science, crystallization and the resulting crystal habit are determined by interfacial properties, and interfaces affect diffusion through polycrystalline materials. In nanotechnology, much work on self-assembly, molecular recognition, catalysis, electrochemistry and numerous other applications depends on the properties of interfaces. The structure and properties of interfaces have been studied experimentally using a variety of techniques including various forms of microscopy, wetting measurements, and scattering techniques. Conventionally, the typical interface considered was highly homogeneous and exhibited a uniform composition and roughness. In contrast, many of the interfaces encountered in biological or nanotechnological systems have surfaces with a greater degree of complexity. While the surface may be compositionally homogeneous over a large area, these surfaces are structured and have a complex surface topology. On a mixed interface, several different chemical groups may be present on the surface, and the chemical composition can vary on a sub-nanometer length scale. Structured systems are inherently difficult to experimentally measure. Most techniques available to characterize interfaces average properties over the entire surface and are not sensitive to nanoscale variations. Furthermore, many of these techniques are incapable of distinguishing global, surface-dependent properties from artifactual influences. Many surface characterization techniques require a large, flat, smooth surface. Preparation of mixed interfaces is an experimental challenge as well as many mixed interfaces with nanoscale structure are present on objects that are themselves nanoscale, such as proteins. Several technological hurdles exist that limit the ability to produce nanoscale mixed interfaces large enough for conventional measurements. In this thesis, the effect of surface structure on wetting behavior was investigated. Interfaces can be characterized by the energy required to form them, a quantity called interfacial energy. Models have been developed to describe the interfacial energy of mixed interfaces for a wide range of surfaces. These models only account for the composition of the surface. The wetting behavior of mixed surfaces has also been related to artifact-dependent wetting effects (namely the effect of a boundary or asperity). No attempt has been made to incorporate surface structure into a global expression of interfacial energy. This thesis will study how the structure of an interface determines the resulting interfacial energy. Surfaces prepared with chemical domains of different length scales demonstrate and interfacial energy trend with significant deviation from the current best model. Specifically, the observed trend is non-linear, unlike the conventional model, and furthermore in some cases, is non-monotonic. These deviations are shown to stem from the surfaces' intrinsic structure and are not an artifact of the measurement process or surface defects. The deviations from the predicted trend are explained by the molecular scale structure of the solvent. The two proposed mechanisms, cavitation and confinement, arise when surface features are smaller than a solvent-dependent length. With cavitation, nonwetting surface features below a size threshold are more wetting than would be expected. With confinement, wetting patches become less wetting as their dimensions are decreased. Molecular dynamics simulations support the proposed mechanisms. Additional experimental results provide further experimental evidence of the proposed molecular-scale wetting phenomena.