Author: Sandeep Kumar Shukla
Publisher: Springer Science & Business Media
ISBN: 1402080689
Category : Computers
Languages : en
Pages : 364
Book Description
One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.
Nano, Quantum and Molecular Computing
Author: Sandeep Kumar Shukla
Publisher: Springer Science & Business Media
ISBN: 1402080689
Category : Computers
Languages : en
Pages : 364
Book Description
One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.
Publisher: Springer Science & Business Media
ISBN: 1402080689
Category : Computers
Languages : en
Pages : 364
Book Description
One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.
Nano, Quantum and Molecular Computing
Author: Sandeep Kumar Shukla
Publisher: Springer Science & Business Media
ISBN: 1402080670
Category : Computers
Languages : en
Pages : 364
Book Description
One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.
Publisher: Springer Science & Business Media
ISBN: 1402080670
Category : Computers
Languages : en
Pages : 364
Book Description
One of the grand challenges in the nano-scopic computing era is guarantees of robustness. Robust computing system design is confronted with quantum physical, probabilistic, and even biological phenomena, and guaranteeing high reliability is much more difficult than ever before. Scaling devices down to the level of single electron operation will bring forth new challenges due to probabilistic effects and uncertainty in guaranteeing 'zero-one' based computing. Minuscule devices imply billions of devices on a single chip, which may help mitigate the challenge of uncertainty by replication and redundancy. However, such device densities will create a design and validation nightmare with the shear scale. The questions that confront computer engineers regarding the current status of nanocomputing material and the reliability of systems built from such miniscule devices, are difficult to articulate and answer. We have found a lack of resources in the confines of a single volume that at least partially attempts to answer these questions. We believe that this volume contains a large amount of research material as well as new ideas that will be very useful for some one starting research in the arena of nanocomputing, not at the device level, but the problems one would face at system level design and validation when nanoscopic physicality will be present at the device level.
Computational Nanoscience
Author: Kálmán Varga
Publisher: Cambridge University Press
ISBN: 1139501054
Category : Science
Languages : en
Pages : 445
Book Description
Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems.
Publisher: Cambridge University Press
ISBN: 1139501054
Category : Science
Languages : en
Pages : 445
Book Description
Computer simulation is an indispensable research tool in modeling, understanding and predicting nanoscale phenomena. However, the advanced computer codes used by researchers are too complicated for graduate students wanting to understand computer simulations of physical systems. This book gives students the tools to develop their own codes. Describing advanced algorithms, the book is ideal for students in computational physics, quantum mechanics, atomic and molecular physics, and condensed matter theory. It contains a wide variety of practical examples of varying complexity to help readers at all levels of experience. An algorithm library in Fortran 90, available online at www.cambridge.org/9781107001701, implements the advanced computational approaches described in the text to solve physical problems.
Quantum Nanoelectronics
Author: Edward L. Wolf
Publisher: John Wiley & Sons
ISBN: 3527665382
Category : Technology & Engineering
Languages : en
Pages : 473
Book Description
A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.
Publisher: John Wiley & Sons
ISBN: 3527665382
Category : Technology & Engineering
Languages : en
Pages : 473
Book Description
A tutorial coverage of electronic technology, starting from the basics of condensed matter and quantum physics. Experienced author Ed Wolf presents established and novel devices like Field Effect and Single Electron Transistors, and leads the reader up to applications in data storage, quantum computing, and energy harvesting. Intended to be self-contained for students with two years of calculus-based college physics, with corresponding fundamental knowledge in mathematics, computing and chemistry.
Molecular Quantum Dynamics
Author: Fabien Gatti
Publisher: Springer Science & Business Media
ISBN: 3642452906
Category : Science
Languages : en
Pages : 281
Book Description
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.
Publisher: Springer Science & Business Media
ISBN: 3642452906
Category : Science
Languages : en
Pages : 281
Book Description
This book focuses on current applications of molecular quantum dynamics. Examples from all main subjects in the field, presented by the internationally renowned experts, illustrate the importance of the domain. Recent success in helping to understand experimental observations in fields like heterogeneous catalysis, photochemistry, reactive scattering, optical spectroscopy, or femto- and attosecond chemistry and spectroscopy underline that nuclear quantum mechanical effects affect many areas of chemical and physical research. In contrast to standard quantum chemistry calculations, where the nuclei are treated classically, molecular quantum dynamics can cover quantum mechanical effects in their motion. Many examples, ranging from fundamental to applied problems, are known today that are impacted by nuclear quantum mechanical effects, including phenomena like tunneling, zero point energy effects, or non-adiabatic transitions. Being important to correctly understand many observations in chemical, organic and biological systems, or for the understanding of molecular spectroscopy, the range of applications covered in this book comprises broad areas of science: from astrophysics and the physics and chemistry of the atmosphere, over elementary processes in chemistry, to biological processes (such as the first steps of photosynthesis or vision). Nevertheless, many researchers refrain from entering this domain. The book "Molecular Quantum Dynamics" offers them an accessible introduction. Although the calculation of large systems still presents a challenge - despite the considerable power of modern computers - new strategies have been developed to extend the studies to systems of increasing size. Such strategies are presented after a brief overview of the historical background. Strong emphasis is put on an educational presentation of the fundamental concepts, so that the reader can inform himself about the most important concepts, like eigenstates, wave packets, quantum mechanical resonances, entanglement, etc. The chosen examples highlight that high-level experiments and theory need to work closely together. This book thus is a must-read both for researchers working experimentally or theoretically in the concerned fields, and generally for anyone interested in the exciting world of molecular quantum dynamics.
Nanocomputing
Author: Jang-Yu Hsu
Publisher: CRC Press
ISBN: 981424127X
Category : Science
Languages : en
Pages : 368
Book Description
This book provides a comprehensive overview of the computational physics for nanoscience and nanotechnology. Based on MATLAB and the C++ distributed computing paradigm, the book gives instructive explanations of the underlying physics for mesoscopic systems with many listed programs that readily compute physical properties into nanoscales. Many generated graphical pictures demonstrate not only the principles of physics, but also the methodology of computing.
Publisher: CRC Press
ISBN: 981424127X
Category : Science
Languages : en
Pages : 368
Book Description
This book provides a comprehensive overview of the computational physics for nanoscience and nanotechnology. Based on MATLAB and the C++ distributed computing paradigm, the book gives instructive explanations of the underlying physics for mesoscopic systems with many listed programs that readily compute physical properties into nanoscales. Many generated graphical pictures demonstrate not only the principles of physics, but also the methodology of computing.
Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains
Author: MacLennan, Bruce
Publisher: IGI Global
ISBN: 1609601882
Category : Computers
Languages : en
Pages : 392
Book Description
Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains compiles research in areas where nanoscience and computer science meet. This book explores current and future trends that discus areas such as, cellular nanocomputers, DNA self-assembly, and the architectural design of a "nano-brain." The authors of each chapter have provided in-depth insight into the current state of research in nanotechnology and molecular computation as well as identified successful approaches, tools and methodologies in their research.
Publisher: IGI Global
ISBN: 1609601882
Category : Computers
Languages : en
Pages : 392
Book Description
Theoretical and Technological Advancements in Nanotechnology and Molecular Computation: Interdisciplinary Gains compiles research in areas where nanoscience and computer science meet. This book explores current and future trends that discus areas such as, cellular nanocomputers, DNA self-assembly, and the architectural design of a "nano-brain." The authors of each chapter have provided in-depth insight into the current state of research in nanotechnology and molecular computation as well as identified successful approaches, tools and methodologies in their research.
Quantum Mechanics with Applications to Nanotechnology and Information Science
Author: Yehuda B. Band
Publisher: Academic Press
ISBN: 0444537872
Category : Science
Languages : en
Pages : 993
Book Description
Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has
Publisher: Academic Press
ISBN: 0444537872
Category : Science
Languages : en
Pages : 993
Book Description
Quantum mechanics transcends and supplants classical mechanics at the atomic and subatomic levels. It provides the underlying framework for many subfields of physics, chemistry and materials science, including condensed matter physics, atomic physics, molecular physics, quantum chemistry, particle physics, and nuclear physics. It is the only way we can understand the structure of materials, from the semiconductors in our computers to the metal in our automobiles. It is also the scaffolding supporting much of nanoscience and nanotechnology. The purpose of this book is to present the fundamentals of quantum theory within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology. As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today. Hence, the emphasis on new topics that are not included in older reference texts, such as quantum information theory, decoherence and dissipation, and on applications to nanotechnology, including quantum dots, wires and wells. - This book provides a novel approach to Quantum Mechanics whilst also giving readers the requisite background and training for the scientists and engineers of the 21st Century who need to come to grips with quantum phenomena - The fundamentals of quantum theory are provided within a modern perspective, with emphasis on applications to nanoscience and nanotechnology, and information-technology - Older books on quantum mechanics do not contain the amalgam of ideas, concepts and tools necessary to prepare engineers and scientists to deal with the new facets of quantum mechanics and their application to quantum information science and nanotechnology - As the frontiers of science have advanced, the sort of curriculum adequate for students in the sciences and engineering twenty years ago is no longer satisfactory today - There are many excellent quantum mechanics books available, but none have the emphasis on nanotechnology and quantum information science that this book has
Into The Nano Era
Author: Howard Huff
Publisher: Springer Science & Business Media
ISBN: 3540745599
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
Even as we tentatively enter the nanotechnology era, we are now encountering the 50th anniversary of the invention of the IC. Will silicon continue to be the pre-eminent material and will Moore’s Law continue unabated, albeit in a broader economic venue, in the nanotechnology era? This monograph addresses these issues by a re-examination of the scientific and technological foundations of the micro-electronics era. It also features two visionary articles of Nobel laureates.
Publisher: Springer Science & Business Media
ISBN: 3540745599
Category : Technology & Engineering
Languages : en
Pages : 364
Book Description
Even as we tentatively enter the nanotechnology era, we are now encountering the 50th anniversary of the invention of the IC. Will silicon continue to be the pre-eminent material and will Moore’s Law continue unabated, albeit in a broader economic venue, in the nanotechnology era? This monograph addresses these issues by a re-examination of the scientific and technological foundations of the micro-electronics era. It also features two visionary articles of Nobel laureates.
Design of Semiconductor QCA Systems
Author: Weiqiang Liu
Publisher: Artech House
ISBN: 1608076873
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
Integrated circuits have become smaller, cheaper, and more reliable and certainly have revolutionized the world of electronics. Integrated circuits are used in almost all electronic devices and systems, many of which, such as the Internet, computers, and mobile phones, have become essential parts of modern life and have changed the way we live. Quantum-dot cellular automata (QCA) provides a revolutionary approach to computing with device-to-device interactions. The design of a QCA circuit is radically different from a conventional digital design due to its unique characteristics at both the physical level and logic level. Research on both circuit architecture and device design is required for a profound understanding of QCA nanotechnologies. This detailed reference presents practical design aspects of QCA with an emphasis on developing real-world implementations.
Publisher: Artech House
ISBN: 1608076873
Category : Technology & Engineering
Languages : en
Pages : 253
Book Description
Integrated circuits have become smaller, cheaper, and more reliable and certainly have revolutionized the world of electronics. Integrated circuits are used in almost all electronic devices and systems, many of which, such as the Internet, computers, and mobile phones, have become essential parts of modern life and have changed the way we live. Quantum-dot cellular automata (QCA) provides a revolutionary approach to computing with device-to-device interactions. The design of a QCA circuit is radically different from a conventional digital design due to its unique characteristics at both the physical level and logic level. Research on both circuit architecture and device design is required for a profound understanding of QCA nanotechnologies. This detailed reference presents practical design aspects of QCA with an emphasis on developing real-world implementations.