Multivariable Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multivariable Mathematics PDF full book. Access full book title Multivariable Mathematics by Theodore Shifrin. Download full books in PDF and EPUB format.

Multivariable Mathematics

Multivariable Mathematics PDF Author: Theodore Shifrin
Publisher: John Wiley & Sons
ISBN: 047152638X
Category : Mathematics
Languages : en
Pages : 514

Book Description
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.

Multivariable Mathematics

Multivariable Mathematics PDF Author: Theodore Shifrin
Publisher: John Wiley & Sons
ISBN: 047152638X
Category : Mathematics
Languages : en
Pages : 514

Book Description
Multivariable Mathematics combines linear algebra and multivariable mathematics in a rigorous approach. The material is integrated to emphasize the recurring theme of implicit versus explicit that persists in linear algebra and analysis. In the text, the author includes all of the standard computational material found in the usual linear algebra and multivariable calculus courses, and more, interweaving the material as effectively as possible, and also includes complete proofs. * Contains plenty of examples, clear proofs, and significant motivation for the crucial concepts. * Numerous exercises of varying levels of difficulty, both computational and more proof-oriented. * Exercises are arranged in order of increasing difficulty.

An Introduction to Multivariable Mathematics

An Introduction to Multivariable Mathematics PDF Author: Leon Simon
Publisher: Morgan & Claypool Publishers
ISBN: 1598298011
Category : Algebras, Linear
Languages : en
Pages : 143

Book Description
The core material of this text is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds.

Multivariable Mathematics

Multivariable Mathematics PDF Author: Richard E. Williamson
Publisher:
ISBN: 9780131235700
Category : Algebras, Linear
Languages : en
Pages : 838

Book Description
For courses in second-year calculus, linear calculus and differential equations. This text explores the standard problem-solving techniques of multivariable mathematics - integrating vector algebra ideas with multivariable calculus and differential equations.

An Introduction to Multivariable Mathematics

An Introduction to Multivariable Mathematics PDF Author: Leon Simon
Publisher: Springer Nature
ISBN: 3031023943
Category : Mathematics
Languages : en
Pages : 132

Book Description
The text is designed for use in a forty-lecture introductory course covering linear algebra, multivariable differential calculus, and an introduction to real analysis. The core material of the book is arranged to allow for the main introductory material on linear algebra, including basic vector space theory in Euclidean space and the initial theory of matrices and linear systems, to be covered in the first ten or eleven lectures, followed by a similar number of lectures on basic multivariable analysis, including first theorems on differentiable functions on domains in Euclidean space and a brief introduction to submanifolds. The book then concludes with further essential linear algebra, including the theory of determinants, eigenvalues, and the spectral theorem for real symmetric matrices, and further multivariable analysis, including the contraction mapping principle and the inverse and implicit function theorems. There is also an appendix which provides a nine-lecture introduction to real analysis. There are various ways in which the additional material in the appendix could be integrated into a course--for example in the Stanford Mathematics honors program, run as a four-lecture per week program in the Autumn Quarter each year, the first six lectures of the nine-lecture appendix are presented at the rate of one lecture per week in weeks two through seven of the quarter, with the remaining three lectures per week during those weeks being devoted to the main chapters of the text. It is hoped that the text would be suitable for a quarter or semester course for students who have scored well in the BC Calculus advanced placement examination (or equivalent), particularly those who are considering a possible major in mathematics. The author has attempted to make the presentation rigorous and complete, with the clarity and simplicity needed to make it accessible to an appropriately large group of students. Table of Contents: Linear Algebra / Analysis in R / More Linear Algebra / More Analysis in R / Appendix: Introductory Lectures on Real Analysis

Multivariable Calculus

Multivariable Calculus PDF Author: David Damiano
Publisher: Jones & Bartlett Publishers
ISBN: 0763782475
Category : Mathematics
Languages : en
Pages : 560

Book Description
Written for mathematics, science, and engineering majors who have completed the traditional two-term course in single variable calculus, Multivariable Calculus bridges the gap between mathematical concepts and their real-world applications outside of mathematics. The ideas of multivariable calculus are presented in a context that is informed by their non-mathematical applications. It incorporates collaborative learning strategies and the sophisticated use of technology, which asks students to become active participants in the development of their own understanding of mathematical ideas. This teaching and learning strategy urges students to communicate mathematically, both orally and in writing. With extended examples and exercises and a student-friendly accessible writing style, Multivariable Calculus is an exciting and engaging journey into mathematics relevant to students everyday lives.

A Course in Multivariable Calculus and Analysis

A Course in Multivariable Calculus and Analysis PDF Author: Sudhir R. Ghorpade
Publisher: Springer Science & Business Media
ISBN: 1441916210
Category : Mathematics
Languages : en
Pages : 495

Book Description
This self-contained textbook gives a thorough exposition of multivariable calculus. The emphasis is on correlating general concepts and results of multivariable calculus with their counterparts in one-variable calculus. Further, the book includes genuine analogues of basic results in one-variable calculus, such as the mean value theorem and the fundamental theorem of calculus. This book is distinguished from others on the subject: it examines topics not typically covered, such as monotonicity, bimonotonicity, and convexity, together with their relation to partial differentiation, cubature rules for approximate evaluation of double integrals, and conditional as well as unconditional convergence of double series and improper double integrals. Each chapter contains detailed proofs of relevant results, along with numerous examples and a wide collection of exercises of varying degrees of difficulty, making the book useful to undergraduate and graduate students alike.

Analysis On Manifolds

Analysis On Manifolds PDF Author: James R. Munkres
Publisher: CRC Press
ISBN: 042996269X
Category : Mathematics
Languages : en
Pages : 381

Book Description
A readable introduction to the subject of calculus on arbitrary surfaces or manifolds. Accessible to readers with knowledge of basic calculus and linear algebra. Sections include series of problems to reinforce concepts.

Calculus of Several Variables

Calculus of Several Variables PDF Author: Serge Lang
Publisher: Springer Science & Business Media
ISBN: 1461210682
Category : Mathematics
Languages : en
Pages : 624

Book Description
This new, revised edition covers all of the basic topics in calculus of several variables, including vectors, curves, functions of several variables, gradient, tangent plane, maxima and minima, potential functions, curve integrals, Green’s theorem, multiple integrals, surface integrals, Stokes’ theorem, and the inverse mapping theorem and its consequences. It includes many completely worked-out problems.

Advanced Calculus of Several Variables

Advanced Calculus of Several Variables PDF Author: C. H. Edwards
Publisher: Academic Press
ISBN: 1483268055
Category : Mathematics
Languages : en
Pages : 470

Book Description
Advanced Calculus of Several Variables provides a conceptual treatment of multivariable calculus. This book emphasizes the interplay of geometry, analysis through linear algebra, and approximation of nonlinear mappings by linear ones. The classical applications and computational methods that are responsible for much of the interest and importance of calculus are also considered. This text is organized into six chapters. Chapter I deals with linear algebra and geometry of Euclidean n-space Rn. The multivariable differential calculus is treated in Chapters II and III, while multivariable integral calculus is covered in Chapters IV and V. The last chapter is devoted to venerable problems of the calculus of variations. This publication is intended for students who have completed a standard introductory calculus sequence.

Advanced Calculus (Revised Edition)

Advanced Calculus (Revised Edition) PDF Author: Lynn Harold Loomis
Publisher: World Scientific Publishing Company
ISBN: 9814583952
Category : Mathematics
Languages : en
Pages : 595

Book Description
An authorised reissue of the long out of print classic textbook, Advanced Calculus by the late Dr Lynn Loomis and Dr Shlomo Sternberg both of Harvard University has been a revered but hard to find textbook for the advanced calculus course for decades.This book is based on an honors course in advanced calculus that the authors gave in the 1960's. The foundational material, presented in the unstarred sections of Chapters 1 through 11, was normally covered, but different applications of this basic material were stressed from year to year, and the book therefore contains more material than was covered in any one year. It can accordingly be used (with omissions) as a text for a year's course in advanced calculus, or as a text for a three-semester introduction to analysis.The prerequisites are a good grounding in the calculus of one variable from a mathematically rigorous point of view, together with some acquaintance with linear algebra. The reader should be familiar with limit and continuity type arguments and have a certain amount of mathematical sophistication. As possible introductory texts, we mention Differential and Integral Calculus by R Courant, Calculus by T Apostol, Calculus by M Spivak, and Pure Mathematics by G Hardy. The reader should also have some experience with partial derivatives.In overall plan the book divides roughly into a first half which develops the calculus (principally the differential calculus) in the setting of normed vector spaces, and a second half which deals with the calculus of differentiable manifolds.