Multiscale Modeling of Biological Complexes PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale Modeling of Biological Complexes PDF full book. Access full book title Multiscale Modeling of Biological Complexes by Xiaochuan Zhao. Download full books in PDF and EPUB format.

Multiscale Modeling of Biological Complexes

Multiscale Modeling of Biological Complexes PDF Author: Xiaochuan Zhao
Publisher:
ISBN:
Category : Multiscale modeling
Languages : en
Pages : 208

Book Description
Simulating protein complexes on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we have developed new approaches to integrate coarse-grained (CG), mixed-resolution (referred to as AACG throughout this dissertation), and all-atom (AA) modeling for different stages in a single molecular simulation. First, we developed a top-down multiscale modeling approach -- a new approach, which combines CG, AACG, and AA modeling -- to simulate peptide self-assembly from monomers. We simulated the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the AACG and AA models. Further, a theory was developed to estimate the optimal simulation length for each stage. Finally, our approach and theory have been successfully validated with three amyloid peptides. which highlight the synergy from models at multiple resolutions. This approach improves the efficiency of simulating of peptide assembly process. Furthermore, it serves as proof of concept that applying flexible resolution during the simulation, to adapt to efficiency or accuracy. Second, we gained proof of principle from simulating five heterodimeric models of two G protein-coupled receptors (GPCRs) in the lipid-bilayer membrane on the ns-to-[mu]s timescales. In these simulations of different resolution levels, we observed consistent structural stability, while the AACG and CG models show two- and four-times faster protein diffusion than the AA models, in addition to 4- and 400-fold speedup in the simulation performance. Our findings enable synergy from the combination of AA, AACG, and CG models, which lay the foundation to combine these models in one single simulation. It is also feasible to alternate among different models to represent an efficient solution to investigate complex biophysical systems. To investigation of environmental sensing of histone-like nucleoid-structuring (H-NS) protein, we also apply AA models to simulate H-NS protein at multiple spatial scales. The environmental sensing ability is reflected by residues at binding sites or filaments mechanical properties. With AA simulation of dimers, we investigated potential of the mean force (PMF), to quantitively determine the sensitivity of the environmental change of binding site. The simulation of H-NS tetramers reveals that the site2 rather than site1 takes responsibility for environmental sensing. Through the simulation of H-NS filaments, we were able to reveal the movement of the DNA binding domain, which is sensitive to environmental sensing, also influence the H-NS stability. Then we extended our investigation to H-NS orthologs from different organism. Our findings revealed the adaptive evolution of H-NS in different organism. Our multiscale modeling approaches can be useful tools to simulate biological complexes. We applied different combination of AA, AACG, and CG models of the same system. Our new computational methodology advanced the ability to simulate large systems or long process more efficiently. Our methodology is readily adaptable to other systems, based on the need of sampling, properties of interest, and simulation efficiency. In any circumstances where balance will be reached between efficiency and high-resolution, multiscale modeling would be significantly valuable in molecular modeling.

Multiscale Modeling of Biological Complexes

Multiscale Modeling of Biological Complexes PDF Author: Xiaochuan Zhao
Publisher:
ISBN:
Category : Multiscale modeling
Languages : en
Pages : 208

Book Description
Simulating protein complexes on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we have developed new approaches to integrate coarse-grained (CG), mixed-resolution (referred to as AACG throughout this dissertation), and all-atom (AA) modeling for different stages in a single molecular simulation. First, we developed a top-down multiscale modeling approach -- a new approach, which combines CG, AACG, and AA modeling -- to simulate peptide self-assembly from monomers. We simulated the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the AACG and AA models. Further, a theory was developed to estimate the optimal simulation length for each stage. Finally, our approach and theory have been successfully validated with three amyloid peptides. which highlight the synergy from models at multiple resolutions. This approach improves the efficiency of simulating of peptide assembly process. Furthermore, it serves as proof of concept that applying flexible resolution during the simulation, to adapt to efficiency or accuracy. Second, we gained proof of principle from simulating five heterodimeric models of two G protein-coupled receptors (GPCRs) in the lipid-bilayer membrane on the ns-to-[mu]s timescales. In these simulations of different resolution levels, we observed consistent structural stability, while the AACG and CG models show two- and four-times faster protein diffusion than the AA models, in addition to 4- and 400-fold speedup in the simulation performance. Our findings enable synergy from the combination of AA, AACG, and CG models, which lay the foundation to combine these models in one single simulation. It is also feasible to alternate among different models to represent an efficient solution to investigate complex biophysical systems. To investigation of environmental sensing of histone-like nucleoid-structuring (H-NS) protein, we also apply AA models to simulate H-NS protein at multiple spatial scales. The environmental sensing ability is reflected by residues at binding sites or filaments mechanical properties. With AA simulation of dimers, we investigated potential of the mean force (PMF), to quantitively determine the sensitivity of the environmental change of binding site. The simulation of H-NS tetramers reveals that the site2 rather than site1 takes responsibility for environmental sensing. Through the simulation of H-NS filaments, we were able to reveal the movement of the DNA binding domain, which is sensitive to environmental sensing, also influence the H-NS stability. Then we extended our investigation to H-NS orthologs from different organism. Our findings revealed the adaptive evolution of H-NS in different organism. Our multiscale modeling approaches can be useful tools to simulate biological complexes. We applied different combination of AA, AACG, and CG models of the same system. Our new computational methodology advanced the ability to simulate large systems or long process more efficiently. Our methodology is readily adaptable to other systems, based on the need of sampling, properties of interest, and simulation efficiency. In any circumstances where balance will be reached between efficiency and high-resolution, multiscale modeling would be significantly valuable in molecular modeling.

Multiscale Modeling in Biomechanics and Mechanobiology

Multiscale Modeling in Biomechanics and Mechanobiology PDF Author: Suvranu De
Publisher: Springer
ISBN: 1447165993
Category : Technology & Engineering
Languages : en
Pages : 287

Book Description
Presenting a state-of-the-art overview of theoretical and computational models that link characteristic biomechanical phenomena, this book provides guidelines and examples for creating multiscale models in representative systems and organisms. It develops the reader's understanding of and intuition for multiscale phenomena in biomechanics and mechanobiology, and introduces a mathematical framework and computational techniques paramount to creating predictive multiscale models. Biomechanics involves the study of the interactions of physical forces with biological systems at all scales – including molecular, cellular, tissue and organ scales. The emerging field of mechanobiology focuses on the way that cells produce and respond to mechanical forces – bridging the science of mechanics with the disciplines of genetics and molecular biology. Linking disparate spatial and temporal scales using computational techniques is emerging as a key concept in investigating some of the complex problems underlying these disciplines. Providing an invaluable field manual for graduate students and researchers of theoretical and computational modelling in biology, this book is also intended for readers interested in biomedical engineering, applied mechanics and mathematical biology.

Multiscale Modeling of Developmental Systems

Multiscale Modeling of Developmental Systems PDF Author:
Publisher: Academic Press
ISBN: 0080556531
Category : Science
Languages : en
Pages : 605

Book Description
Mathematical and computational biology is playing an increasingly important role in the biological sciences. This science brings forward unique challenges, many of which are, at the moment, beyond the theoretical techniques available. Developmental biology, due to its complexity, has lagged somewhat behind its sister disciplines (such as molecular biology and population biology) in making use of quantitative modeling to further biological understanding. This volume comprises work that is among the best developmental modeling available and we feel it will do much to remedy this situation.This book is aimed at all those with an interest in the interdisciplinary field of computer and mathematical modeling of multi-cellular and developmental systems. It is also a goal of the Editors to attract more developmental biologists to consider integrating modeling components into their research. Most importantly, this book is intended to serve as a portal into this research area for younger scientists – especially graduate students and post-docs, from both biological and quantitative backgrounds.* Articles written by leading exponents in the field* Provides techniques to address multiscale modeling* Coverage includes a wide spectrum of modeling approaches* Includes descriptions of the most recent advances in the field

Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of Biomolecular Simulations

Multiscale Modeling From Macromolecules to Cell: Opportunities and Challenges of Biomolecular Simulations PDF Author: Valentina Tozzini
Publisher: Frontiers Media SA
ISBN: 2889661091
Category : Science
Languages : en
Pages : 235

Book Description
This eBook is a collection of articles from a Frontiers Research Topic. Frontiers Research Topics are very popular trademarks of the Frontiers Journals Series: they are collections of at least ten articles, all centered on a particular subject. With their unique mix of varied contributions from Original Research to Review Articles, Frontiers Research Topics unify the most influential researchers, the latest key findings and historical advances in a hot research area! Find out more on how to host your own Frontiers Research Topic or contribute to one as an author by contacting the Frontiers Editorial Office: frontiersin.org/about/contact.

Multiscale Modelling in Biomedical Engineering

Multiscale Modelling in Biomedical Engineering PDF Author: Dimitrios I. Fotiadis
Publisher: John Wiley & Sons
ISBN: 1119517346
Category : Science
Languages : en
Pages : 404

Book Description
Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.

Multiscale Modeling of Cancer

Multiscale Modeling of Cancer PDF Author: Vittorio Cristini
Publisher: Cambridge University Press
ISBN: 1139491504
Category : Technology & Engineering
Languages : en
Pages : 299

Book Description
Mathematical modeling, analysis and simulation are set to play crucial roles in explaining tumor behavior, and the uncontrolled growth of cancer cells over multiple time and spatial scales. This book, the first to integrate state-of-the-art numerical techniques with experimental data, provides an in-depth assessment of tumor cell modeling at multiple scales. The first part of the text presents a detailed biological background with an examination of single-phase and multi-phase continuum tumor modeling, discrete cell modeling, and hybrid continuum-discrete modeling. In the final two chapters, the authors guide the reader through problem-based illustrations and case studies of brain and breast cancer, to demonstrate the future potential of modeling in cancer research. This book has wide interdisciplinary appeal and is a valuable resource for mathematical biologists, biomedical engineers and clinical cancer research communities wishing to understand this emerging field.

Multiscale Cancer Modeling

Multiscale Cancer Modeling PDF Author: Thomas S. Deisboeck
Publisher: CRC Press
ISBN: 1439814422
Category : Mathematics
Languages : en
Pages : 492

Book Description
Cancer is a complex disease process that spans multiple scales in space and time. Driven by cutting-edge mathematical and computational techniques, in silico biology provides powerful tools to investigate the mechanistic relationships of genes, cells, and tissues. It enables the creation of experimentally testable hypotheses, the integration of dat

Towards a Mathematical Theory of Complex Biological Systems

Towards a Mathematical Theory of Complex Biological Systems PDF Author: Carlo Bianca
Publisher: World Scientific
ISBN: 9814340537
Category : Mathematics
Languages : en
Pages : 227

Book Description
This monograph has the ambitious aim of developing a mathematical theory of complex biological systems with special attention to the phenomena of ageing, degeneration and repair of biological tissues under individual self-repair actions that may have good potential in medical therapy. The approach to mathematically modeling biological systems needs to tackle the additional difficulties generated by the peculiarities of living matter. These include the lack of invariance principles, abilities to express strategies for individual fitness, heterogeneous behaviors, competition up to proliferative and/or destructive actions, mutations, learning ability, evolution and many others. Applied mathematicians in the field of living systems, especially biological systems, will appreciate the special class of integro-differential equations offered here for modeling at the molecular, celular and tissue scales. A unique perspective is also presented with a number of case studies in biological modeling.

Multiscale Modelling and Simulation

Multiscale Modelling and Simulation PDF Author: Sabine Attinger
Publisher: Springer Science & Business Media
ISBN: 9783540211808
Category : Mathematics
Languages : en
Pages : 304

Book Description
In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.

Multiscale Modeling of the Skeletal System

Multiscale Modeling of the Skeletal System PDF Author: Marco Viceconti
Publisher: Cambridge University Press
ISBN: 0521769507
Category : Mathematics
Languages : en
Pages : 223

Book Description
Systematically working from the whole body down to cellular levels, this book presents a multiscale, integrative approach to skeletal research.