Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon PDF full book. Access full book title Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon by Christian E. Torgersen. Download full books in PDF and EPUB format.

Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon

Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon PDF Author: Christian E. Torgersen
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 198

Book Description
This study examined the distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel unit, reach, and basin-wide spatial scales in both a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. Thermal remote sensing of holding and spawning reaches in the upper subbasins of the North Fork and Middle Fork John Day River provided spatially continuous maps of stream temperature. Multiscale associations between salmon and cool-water areas were assessed by overlaying thermal imagery with fish locations mapped during distributional surveys. Chinook salmon were distributed non-uniformly throughout each study area, indicating that salmon selected certain reaches within each subbasin. The coldest reaches available to salmon within the Middle Fork study areas were low gradient, unconstrained reaches where the cooling influence of groundwater flow was the most apparent. In the Middle Fork, the stream currently managed for grazing and timber harvest, water temperature differences were typically 1-2°C within riffle-pool sequences and 3-4°C among reaches. The reach level association between salmon distribution and stream temperature patterns at channel unit and reach level spatial scales was strongest in the warmest study reach, the Middle Fork, and weakest in the coldest study reach, the North Fork. Pools were the preferred habitat for adult spring chinook in both subbasins; however, riffles were used more in the North Fork, the coldest subbasin. This study identified the problems and also the benefits associated with stream temperature patchiness, or discontinuity, both in currently disturbed and in recovering riverine ecosystems. Connectivity among system components in aquatic ecosystems is generally considered necessary for maintaining long-term ecological health. However, it is heterogeneity in the landscape/hydrogeologic template that creates refuge patches in disturbed stream ecosystems, such as those in the John Day River basin. Our observations of thermal refugia occurring at multiple spatial scales, particularly in the Middle Fork John Day River, indicate that, although discontinuity may be an ecological warning sign, refuge patches in streams should also be viewed as expressions of restoration potential because they are functioning remnants of a once continuous, intact hydrologic system.

Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon

Multiscale Assessment of Thermal Patterns and the Distribution of Chinook Salmon in the John Day River Basin, Oregon PDF Author: Christian E. Torgersen
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 198

Book Description
This study examined the distribution and behavior of adult spring chinook salmon (Oncorhynchus tshawytscha) related to patterns of stream temperature and physical habitat at channel unit, reach, and basin-wide spatial scales in both a wilderness stream and a disturbed stream in the John Day River basin in northeastern Oregon. Thermal remote sensing of holding and spawning reaches in the upper subbasins of the North Fork and Middle Fork John Day River provided spatially continuous maps of stream temperature. Multiscale associations between salmon and cool-water areas were assessed by overlaying thermal imagery with fish locations mapped during distributional surveys. Chinook salmon were distributed non-uniformly throughout each study area, indicating that salmon selected certain reaches within each subbasin. The coldest reaches available to salmon within the Middle Fork study areas were low gradient, unconstrained reaches where the cooling influence of groundwater flow was the most apparent. In the Middle Fork, the stream currently managed for grazing and timber harvest, water temperature differences were typically 1-2°C within riffle-pool sequences and 3-4°C among reaches. The reach level association between salmon distribution and stream temperature patterns at channel unit and reach level spatial scales was strongest in the warmest study reach, the Middle Fork, and weakest in the coldest study reach, the North Fork. Pools were the preferred habitat for adult spring chinook in both subbasins; however, riffles were used more in the North Fork, the coldest subbasin. This study identified the problems and also the benefits associated with stream temperature patchiness, or discontinuity, both in currently disturbed and in recovering riverine ecosystems. Connectivity among system components in aquatic ecosystems is generally considered necessary for maintaining long-term ecological health. However, it is heterogeneity in the landscape/hydrogeologic template that creates refuge patches in disturbed stream ecosystems, such as those in the John Day River basin. Our observations of thermal refugia occurring at multiple spatial scales, particularly in the Middle Fork John Day River, indicate that, although discontinuity may be an ecological warning sign, refuge patches in streams should also be viewed as expressions of restoration potential because they are functioning remnants of a once continuous, intact hydrologic system.

Proceedings of the NWQMC National Conference

Proceedings of the NWQMC National Conference PDF Author:
Publisher:
ISBN:
Category : Water quality management
Languages : en
Pages : 720

Book Description


Malheur National Forest (N.F.), Middle Fork John Day Range Planning Project

Malheur National Forest (N.F.), Middle Fork John Day Range Planning Project PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 690

Book Description


Multiscale Habitat Electivity and Movement Patterns by Adult Spring Chinook Salmon in Seven River Basins of Northeast Oregon

Multiscale Habitat Electivity and Movement Patterns by Adult Spring Chinook Salmon in Seven River Basins of Northeast Oregon PDF Author: David M. Price
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 154

Book Description
I examined habitat electivity and movement patterns of adult spring chinook salmon at microhabitat and channel unit spatial scales, and seasonal to annual temporal scales in seven streams in the Grande Ronde, John Day, and Imnaha basins. The objective was to compare habitat use and availability among streams, channel units, and microhabitats, and to assess chinook salmon fidelity to those habitats using radio-telemetry. The analyses showed that habitat quality and availability in the seven study streams varied. Each stream posed different physical constraints on adult chinook salmon habitat; this was reflected by the differential use of habitat by salmon among streams. Salmon elected pools almost exclusively in the John Day Basin, whereas pools and riffles were elected in near equal proportion in the Grande Ronde and Inmaha basins. Within streams, use was similar between years. Almost all salmon were observed in association with cover, but the type of cover largely reflected availablity. Chinook salmon elected the deepest depths within channel units (microhabitat scale), but not necessarily the deepest channel units among streams (channel unit scale). Chinook salmon did not elect cooler stream temperatures within channel units in any study stream, except the Middle Fork John Day River. Radio-tagged chinook showed a high fidelity to habitats, except when stream temperatures approached lethal limits. Due to stream specific differences in habitat availability and use, multiscale habitat assessments for individual streams are recommended to increase the success of watershed restoration activities.

Riparian Ecology and Management in Multi-land Use Watersheds

Riparian Ecology and Management in Multi-land Use Watersheds PDF Author: American Water Resources Association. Summer Specialty Conference
Publisher:
ISBN:
Category : Riparian areas
Languages : en
Pages : 634

Book Description


John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring ; Fish Research Project Oregon, 1998-1999 Annual Report

John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring ; Fish Research Project Oregon, 1998-1999 Annual Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 31

Book Description
The John Day River basin supports one of the healthiest naturally-produced populations of spring chinook in the mid-Columbia River basin. The study of life history and natural escapement conducted from 1978 to 1985 (Lindsay et al. 1986) provided valuable information on production and productivity of the John Day River spring chinook. With the exception of two years since completion of the study in 1985 (1989 and 1995), spring chinook spawning surveys were conducted in index areas only and have not provided adequate information to assess age composition, progeny-to-parent production values, and estimate natural spawning escapement. The PATH project (Marmorek and Peters 1996) has identified the John Day basin spring chinook as an index population for assessing the effects of alternative future management actions on salmon stocks in the Columbia Basin. To meet the data needs as an index stock, sufficient annual estimates of spawner escapement, age composition, and smolt-to-adult survival are essential. There is need to determine the annual spawner escapement and age composition for the John Day basin spring chinook to provide us the ability to estimate progeny-to-parent production for each brood year. This need can be met by expanding the annual chinook spawning surveys, estimating the annual escapement, and determining age composition by scale pattern analyses. This project provides information as directed under two measures of the Columbia Basin Fish and Wildlife Program (NPPC 1994). Measure 4.3C specifies that the key indicator populations should be monitored to provide detailed stock status information. In addition, measure 7.1C identifies the need for collection of population status, life history, and other data on wild and naturally spawning populations. This project was developed in direct response to recommendations and needs of the PATH project, the Fish and Wildlife Program, and the Columbia Basin Fish and Wildlife Authority Multi-Year Implementation Plan.

Distribution, Habitat Utilization, Movement Patterns, and the Use of Thermal Refugia by Spring Chinook in the Grande Ronde, Imnaha, and John Day Basins

Distribution, Habitat Utilization, Movement Patterns, and the Use of Thermal Refugia by Spring Chinook in the Grande Ronde, Imnaha, and John Day Basins PDF Author:
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages :

Book Description


Distribution, Habitat Use, and Growth of Juvenile Chinook Salmon in the Metolius River Basin, Oregon

Distribution, Habitat Use, and Growth of Juvenile Chinook Salmon in the Metolius River Basin, Oregon PDF Author: Jens C. Lovtang
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 210

Book Description
Chinook salmon (Oncorhynchus tshawytscha) have been absent from their historic spawning and rearing grounds in the Metolius River Basin in central Oregon since 1968, when fish passage was terminated at the Pelton Round Butte Hydroelectric Project on the Deschutes River. Plans have been developed to reestablish passage of anadromous fish through the Project. However, only anecdotal evidence exists on the historic distribution of spring Chinook juveniles in the Basin. A recent approach to characterizing habitat quality for anadromous fishes in the Basin was the development of HabRate (Burke et al. In Press), which presented a relative quality rating of habitat based upon published fish-habitat relationships at the stream reach spatial scale. The present study was initiated to test the predictions of HabRate for summer rearing juvenile Chinook salmon in the Metolius Basin. Chinook salmon fry were released in the winters of 2002 and 2003, and their densities and sizes were quantified via snorkeling and fish collection in six unique study reaches in the upper Metolius River Basin. Each of these stream reaches varied in terms of temperature, habitat availability, invertebrate drift availability, and fish community composition. My observations were not consistent with the qualitative predictions of HabRate. Moreover, habitat utilization was not consistent among study reaches. Similar to other qualitative habitat rating models (e.g. Habitat Suitability Indices (Raleigh et al. 1986) and Instream Flow Incremental Methodology (Bovee 1982)), HabRate's predictions rely solely on physical habitat characteristics, with the assumption that habitat will be used consistently among stream reaches (i.e. a pool in one reach is of equal importance as a pool in another reach). My results suggest that the unique ecological setting of each study reach provides the context for understanding the patterns of growth, habitat use, and diurnal activity of juvenile Chinook salmon. The inclusion of ecological components, such as food availability, the bioenergetic constraints of temperature, and the risk of predation can make these models more biologically realistic. Growth of juvenile Chinook salmon among study reaches had a curvilinear relationship to water temperature, and was also positively related to the drift density of invertebrate biomass. In three collection seasons (fall 2002, spring 2003 and fall 2003) 41 to 69% of the variations in fork lengths were explained by a multiple regression model including temperature and invertebrate drift. Based on these findings, I present a conceptual growth capacity model based on the tenets of bioenergetics as a basis for understanding the relative quality of the habitat among stream reaches for juvenile Chinook salmon. Fish community composition can help to explain observed patterns in habitat utilization and diel activity patterns. In the study reaches that had a greater presence of adult trout (potential predators), observations of juvenile Chinook salmon in mid-channel habitat were infrequent to non-existent during the day and abundances were higher in all habitat types at night. In the study reaches with colder water temperatures, observed juvenile Chinook salmon densities were higher at night. I suggest that habitat selection and diurnal activity patterns in some study reaches are reflective of strategies taken by the fish to minimize risks of predation.

John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring ; Fish Research Project Oregon, 1999-2000 Annual Report

John Day Basin Spring Chinook Salmon Escapement and Productivity Monitoring ; Fish Research Project Oregon, 1999-2000 Annual Report PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 41

Book Description
The John Day River basin supports one of the healthiest populations of spring chinook salmon (Oncorhynchus tshawytscha) in the entire Columbia River basin. Spring chinook salmon in this basin are therefore, used as an important index stock to measure the effects of future management actions on other salmon stocks in the Columbia basin. To meet the data requirements as an index stock, we estimated annual spawner escapement, age-structure, and smolt-to-adult survival. This information will allow us to estimate progeny-to-parent production for each brood year. To estimate smolt-to-adult survival rates, 1,852 chinook smolts were tagged with PIT tags from 3 March to 5 May, 2000. Length of captured smolts varied, ranging from 80 to 147 mm fork length (mean = 113 mm). These fish will be monitored for PIT tags as returning adults at dams and during future spawning ground surveys. During spawning ground surveys, a total of 351.3 km of stream were surveyed resulting in the observation of 478 redds. When expanded, we estimated total number of redds at 481 and total number of spawners at 1,583 fish in the John Day River basin. We estimated that 13% of the redds were in the mainstem John Day, 27% in the Middle Fork, 34% in the North Fork, and 26% were in the Granite Creek basin. Sampled carcasses had a sex ratio comprised of 53% females and 47% males with an age structure comprised of 0.5% age-2, 6.3% age-3, 88.7% age-4, and 4.5% age-5 fish. Five of the 405 carcasses examined had fin clips suggesting they were of hatchery origin. The 1999 index redd count total for the North Fork, Mainstem, and Granite Creek was lower than the 1999 average (535) but well within the range of annual redd counts during this period. The index redd count for the Middle Fork was higher than the 1990's average (92) but considerably lower than the average from 1978-1985 (401). Although quite variable over the past 40 years, the number of redds in the John Day River basin during 1999 was well within the range of redd counts since they were initiated in 1959.

Chinook Salmon Populations in Oregon Coastal River Basins

Chinook Salmon Populations in Oregon Coastal River Basins PDF Author: J. W. Nicholas
Publisher:
ISBN:
Category : Chinook salmon
Languages : en
Pages : 388

Book Description