Author: Hitoshi Yano
Publisher: CRC Press
ISBN: 1498763553
Category : Business & Economics
Languages : en
Pages : 296
Book Description
Recently, many books on multiobjective programming have been published. However, only a few books have been published, in which multiobjective programming under the randomness and the fuzziness are investigated. On the other hand, several books on multilevel programming have been published, in which multiple decision makers are involved in hierarchical decision situations. In this book, we introduce the latest advances in the field of multiobjective programming and multilevel programming under uncertainty. The reader can immediately use proposed methods to solve multiobjective programming and multilevel programming, which are based on linear programming or convex programming technique. Organization of each capter is summarized as follows. In Chapter 2, multiobjective programming problems with random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 3, multiobjective programming problems with fuzzy random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which not only the uncertainty of fuzzy random variables but also the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 4, multiobjective multilevel programming is discussed, and the interactive algorithms are developed to obtain a satisfactory solution, in which the hierarchical decision structure of multiple decision makers is reflected. In Chapter 5, two kinds of farm planning problems are solved by applying the proposed method, in which cost coefficients of crops are expressed by random variables.
Interactive Multiobjective Decision Making Under Uncertainty
Author: Hitoshi Yano
Publisher: CRC Press
ISBN: 1498763553
Category : Business & Economics
Languages : en
Pages : 296
Book Description
Recently, many books on multiobjective programming have been published. However, only a few books have been published, in which multiobjective programming under the randomness and the fuzziness are investigated. On the other hand, several books on multilevel programming have been published, in which multiple decision makers are involved in hierarchical decision situations. In this book, we introduce the latest advances in the field of multiobjective programming and multilevel programming under uncertainty. The reader can immediately use proposed methods to solve multiobjective programming and multilevel programming, which are based on linear programming or convex programming technique. Organization of each capter is summarized as follows. In Chapter 2, multiobjective programming problems with random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 3, multiobjective programming problems with fuzzy random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which not only the uncertainty of fuzzy random variables but also the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 4, multiobjective multilevel programming is discussed, and the interactive algorithms are developed to obtain a satisfactory solution, in which the hierarchical decision structure of multiple decision makers is reflected. In Chapter 5, two kinds of farm planning problems are solved by applying the proposed method, in which cost coefficients of crops are expressed by random variables.
Publisher: CRC Press
ISBN: 1498763553
Category : Business & Economics
Languages : en
Pages : 296
Book Description
Recently, many books on multiobjective programming have been published. However, only a few books have been published, in which multiobjective programming under the randomness and the fuzziness are investigated. On the other hand, several books on multilevel programming have been published, in which multiple decision makers are involved in hierarchical decision situations. In this book, we introduce the latest advances in the field of multiobjective programming and multilevel programming under uncertainty. The reader can immediately use proposed methods to solve multiobjective programming and multilevel programming, which are based on linear programming or convex programming technique. Organization of each capter is summarized as follows. In Chapter 2, multiobjective programming problems with random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 3, multiobjective programming problems with fuzzy random variables are formulated, and the corresponding interactive algorithms are developed to obtain a satisfactory solution, in which not only the uncertainty of fuzzy random variables but also the fuzziness of human's subjective judgment for permission levels are considered. In Chapter 4, multiobjective multilevel programming is discussed, and the interactive algorithms are developed to obtain a satisfactory solution, in which the hierarchical decision structure of multiple decision makers is reflected. In Chapter 5, two kinds of farm planning problems are solved by applying the proposed method, in which cost coefficients of crops are expressed by random variables.
Uncertain Multi-Attribute Decision Making
Author: Zeshui Xu
Publisher: Springer
ISBN: 3662456400
Category : Business & Economics
Languages : en
Pages : 375
Book Description
This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a reference guide for researchers and practitioners working in e.g. the fields of operations research, information science, management science and engineering. It can also be used as a textbook for postgraduate and senior undergraduate students.
Publisher: Springer
ISBN: 3662456400
Category : Business & Economics
Languages : en
Pages : 375
Book Description
This book introduces methods for uncertain multi-attribute decision making including uncertain multi-attribute group decision making and their applications to supply chain management, investment decision making, personnel assessment, redesigning products, maintenance services, military system efficiency evaluation. Multi-attribute decision making, also known as multi-objective decision making with finite alternatives, is an important component of modern decision science. The theory and methods of multi-attribute decision making have been extensively applied in engineering, economics, management and military contexts, such as venture capital project evaluation, facility location, bidding, development ranking of industrial sectors and so on. Over the last few decades, great attention has been paid to research on multi-attribute decision making in uncertain settings, due to the increasing complexity and uncertainty of supposedly objective aspects and the fuzziness of human thought. This book can be used as a reference guide for researchers and practitioners working in e.g. the fields of operations research, information science, management science and engineering. It can also be used as a textbook for postgraduate and senior undergraduate students.
Multi-objective Decision Analysis
Author: Clinton W. Brownley
Publisher: Business Expert Press
ISBN: 1606494538
Category : Business & Economics
Languages : en
Pages : 167
Book Description
Whether managing strategy, operations or products, knowing how to make the best decision in a complex, uncertain business environment is difficult. You might be faced with multiple, competing objectives, which means making trade-offs. To complicate matters, any uncertainty makes it hard to explicitly understand how different objectives will impact potential outcomes. This book will help you face these problems. It provides a decision analysis framework implemented as a simple spreadsheet tool. This multi-objective decision analysis framework helps you to measure trade-offs among objectives and incorporate uncertainties and risk preferences. With this book, you will be able to identify what information is needed to make a decision, define how that information should be combined, and, finally, provide quantifiable evidence to clearly communicate and justify the decision. The process involves minimal overhead and is perfect for busy professionals who need a simple, structured process for making, tracking, and communicating decisions. This process makes decision making more efficient by focusing only on information and factors that are well-defined, measureable, and relevant to the decision at hand. The framework requires clear characterization of a decision, ensuring that it can be traced and is consistent with the intended objectives and organizational values. Using this structured decision-making framework, anyone can consistently make better decisions to gain competitive and strategic advantage.
Publisher: Business Expert Press
ISBN: 1606494538
Category : Business & Economics
Languages : en
Pages : 167
Book Description
Whether managing strategy, operations or products, knowing how to make the best decision in a complex, uncertain business environment is difficult. You might be faced with multiple, competing objectives, which means making trade-offs. To complicate matters, any uncertainty makes it hard to explicitly understand how different objectives will impact potential outcomes. This book will help you face these problems. It provides a decision analysis framework implemented as a simple spreadsheet tool. This multi-objective decision analysis framework helps you to measure trade-offs among objectives and incorporate uncertainties and risk preferences. With this book, you will be able to identify what information is needed to make a decision, define how that information should be combined, and, finally, provide quantifiable evidence to clearly communicate and justify the decision. The process involves minimal overhead and is perfect for busy professionals who need a simple, structured process for making, tracking, and communicating decisions. This process makes decision making more efficient by focusing only on information and factors that are well-defined, measureable, and relevant to the decision at hand. The framework requires clear characterization of a decision, ensuring that it can be traced and is consistent with the intended objectives and organizational values. Using this structured decision-making framework, anyone can consistently make better decisions to gain competitive and strategic advantage.
Improving Homeland Security Decisions
Author: Ali E. Abbas
Publisher: Cambridge University Press
ISBN: 1107161886
Category : Computers
Languages : en
Pages : 787
Book Description
Are we safer from terrorism today and is our homeland security money well spent? This book offers answers and more.
Publisher: Cambridge University Press
ISBN: 1107161886
Category : Computers
Languages : en
Pages : 787
Book Description
Are we safer from terrorism today and is our homeland security money well spent? This book offers answers and more.
Objectives and Multi-Objective Decision Making Under Uncertainty
Author: J. Wilhelm
Publisher: Springer Science & Business Media
ISBN: 3642463266
Category : Business & Economics
Languages : en
Pages : 118
Book Description
Publisher: Springer Science & Business Media
ISBN: 3642463266
Category : Business & Economics
Languages : en
Pages : 118
Book Description
Decisions with Multiple Objectives
Author: Ralph L. Keeney
Publisher: Cambridge University Press
ISBN: 9780521438834
Category : Business & Economics
Languages : en
Pages : 596
Book Description
This book describes how a confused decision maker, who wishes to make a reasonable and responsible choice among alternatives, can systematically probe their thoughts and feelings in order to make the critically important trade-offs between incommensurable objectives.
Publisher: Cambridge University Press
ISBN: 9780521438834
Category : Business & Economics
Languages : en
Pages : 596
Book Description
This book describes how a confused decision maker, who wishes to make a reasonable and responsible choice among alternatives, can systematically probe their thoughts and feelings in order to make the critically important trade-offs between incommensurable objectives.
Decision Making Under Uncertainty
Author: Mykel J. Kochenderfer
Publisher: MIT Press
ISBN: 0262331713
Category : Computers
Languages : en
Pages : 350
Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Publisher: MIT Press
ISBN: 0262331713
Category : Computers
Languages : en
Pages : 350
Book Description
An introduction to decision making under uncertainty from a computational perspective, covering both theory and applications ranging from speech recognition to airborne collision avoidance. Many important problems involve decision making under uncertainty—that is, choosing actions based on often imperfect observations, with unknown outcomes. Designers of automated decision support systems must take into account the various sources of uncertainty while balancing the multiple objectives of the system. This book provides an introduction to the challenges of decision making under uncertainty from a computational perspective. It presents both the theory behind decision making models and algorithms and a collection of example applications that range from speech recognition to aircraft collision avoidance. Focusing on two methods for designing decision agents, planning and reinforcement learning, the book covers probabilistic models, introducing Bayesian networks as a graphical model that captures probabilistic relationships between variables; utility theory as a framework for understanding optimal decision making under uncertainty; Markov decision processes as a method for modeling sequential problems; model uncertainty; state uncertainty; and cooperative decision making involving multiple interacting agents. A series of applications shows how the theoretical concepts can be applied to systems for attribute-based person search, speech applications, collision avoidance, and unmanned aircraft persistent surveillance. Decision Making Under Uncertainty unifies research from different communities using consistent notation, and is accessible to students and researchers across engineering disciplines who have some prior exposure to probability theory and calculus. It can be used as a text for advanced undergraduate and graduate students in fields including computer science, aerospace and electrical engineering, and management science. It will also be a valuable professional reference for researchers in a variety of disciplines.
Multicriteria Decision-Making Under Conditions of Uncertainty
Author: Petr Ekel
Publisher: John Wiley & Sons
ISBN: 1119534925
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
A guide to the various models and methods to multicriteria decision-making in conditions of uncertainty presented in a systematic approach Multicriteria Decision-Making under Conditions of Uncertainty presents approaches that help to answer the fundamental questions at the center of all decision-making problems: "What to do?" and "How to do it?" The book explores methods of representing and handling diverse manifestations of the uncertainty factor and a multicriteria nature of problems that can arise in system design, planning, operation, and control. The authors—noted experts on the topic—and their book covers essential questions, including notions and fundamental concepts of fuzzy sets, models and methods of multiobjective as well as multiattribute decision-making, the classical approach to dealing with uncertainty of information and its generalization for analyzing multicriteria problems in condition of uncertainty, and more. This comprehensive book contains information on "harmonious solutions" in multiobjective problem-solving (analyzing “i>X, F> models), construction and analysis of “i>X, R/i” models, results aimed at generating robust solutions in analyzing multicriteria problems under uncertainty, and more. In addition, the book includes illustrative examples of various applications, including real-world case studies related to the authors’ various industrial projects. This important resource: Explains the design and processing aspect of fuzzy sets, including construction of membership functions, fuzzy numbers, fuzzy relations, aggregation operations, and fuzzy sets transformations Describes models of multiobjective decision-making (“i>X. M/i” models), their analysis on the basis of using the Bellman-Zadeh approach to decision-making in a fuzzy environment, and their diverse applications, including multicriteria allocation of resources Investigates models of multiattribute decision-making (“i>X, R/i” models) and their analysis on the basis of the construction and processing of fuzzy preference relations as well as demonstrating their applications to solve diverse classes of multiattribute problems Explores notions of payoff matrices and fuzzy-set-based generalization and modification of the classic approach to decision-making under conditions of uncertainty to generate robust solutions in analyzing multicriteria problems Written for students, researchers and practitioners in disciplines in which decision-making is of paramount relevance, Multicriteria Decision-Making under Conditions of Uncertainty presents a systematic and current approach that encompasses a range of models and methods as well as new applications.
Publisher: John Wiley & Sons
ISBN: 1119534925
Category : Technology & Engineering
Languages : en
Pages : 368
Book Description
A guide to the various models and methods to multicriteria decision-making in conditions of uncertainty presented in a systematic approach Multicriteria Decision-Making under Conditions of Uncertainty presents approaches that help to answer the fundamental questions at the center of all decision-making problems: "What to do?" and "How to do it?" The book explores methods of representing and handling diverse manifestations of the uncertainty factor and a multicriteria nature of problems that can arise in system design, planning, operation, and control. The authors—noted experts on the topic—and their book covers essential questions, including notions and fundamental concepts of fuzzy sets, models and methods of multiobjective as well as multiattribute decision-making, the classical approach to dealing with uncertainty of information and its generalization for analyzing multicriteria problems in condition of uncertainty, and more. This comprehensive book contains information on "harmonious solutions" in multiobjective problem-solving (analyzing “i>X, F> models), construction and analysis of “i>X, R/i” models, results aimed at generating robust solutions in analyzing multicriteria problems under uncertainty, and more. In addition, the book includes illustrative examples of various applications, including real-world case studies related to the authors’ various industrial projects. This important resource: Explains the design and processing aspect of fuzzy sets, including construction of membership functions, fuzzy numbers, fuzzy relations, aggregation operations, and fuzzy sets transformations Describes models of multiobjective decision-making (“i>X. M/i” models), their analysis on the basis of using the Bellman-Zadeh approach to decision-making in a fuzzy environment, and their diverse applications, including multicriteria allocation of resources Investigates models of multiattribute decision-making (“i>X, R/i” models) and their analysis on the basis of the construction and processing of fuzzy preference relations as well as demonstrating their applications to solve diverse classes of multiattribute problems Explores notions of payoff matrices and fuzzy-set-based generalization and modification of the classic approach to decision-making under conditions of uncertainty to generate robust solutions in analyzing multicriteria problems Written for students, researchers and practitioners in disciplines in which decision-making is of paramount relevance, Multicriteria Decision-Making under Conditions of Uncertainty presents a systematic and current approach that encompasses a range of models and methods as well as new applications.
Multi-Objective Decision Making
Author: Diederik M. Zhou
Publisher: Springer Nature
ISBN: 3031015762
Category : Computers
Languages : en
Pages : 111
Book Description
Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs). First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the available information about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems. Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting. Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.
Publisher: Springer Nature
ISBN: 3031015762
Category : Computers
Languages : en
Pages : 111
Book Description
Many real-world decision problems have multiple objectives. For example, when choosing a medical treatment plan, we want to maximize the efficacy of the treatment, but also minimize the side effects. These objectives typically conflict, e.g., we can often increase the efficacy of the treatment, but at the cost of more severe side effects. In this book, we outline how to deal with multiple objectives in decision-theoretic planning and reinforcement learning algorithms. To illustrate this, we employ the popular problem classes of multi-objective Markov decision processes (MOMDPs) and multi-objective coordination graphs (MO-CoGs). First, we discuss different use cases for multi-objective decision making, and why they often necessitate explicitly multi-objective algorithms. We advocate a utility-based approach to multi-objective decision making, i.e., that what constitutes an optimal solution to a multi-objective decision problem should be derived from the available information about user utility. We show how different assumptions about user utility and what types of policies are allowed lead to different solution concepts, which we outline in a taxonomy of multi-objective decision problems. Second, we show how to create new methods for multi-objective decision making using existing single-objective methods as a basis. Focusing on planning, we describe two ways to creating multi-objective algorithms: in the inner loop approach, the inner workings of a single-objective method are adapted to work with multi-objective solution concepts; in the outer loop approach, a wrapper is created around a single-objective method that solves the multi-objective problem as a series of single-objective problems. After discussing the creation of such methods for the planning setting, we discuss how these approaches apply to the learning setting. Next, we discuss three promising application domains for multi-objective decision making algorithms: energy, health, and infrastructure and transportation. Finally, we conclude by outlining important open problems and promising future directions.
Multi-objective Decision-making Under Uncertainty: Fuzzy Logic Methods
Author: Terry L. Hardy
Publisher:
ISBN:
Category : Decision making
Languages : en
Pages : 20
Book Description
Publisher:
ISBN:
Category : Decision making
Languages : en
Pages : 20
Book Description