Multimodal Imaging in Neurology PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multimodal Imaging in Neurology PDF full book. Access full book title Multimodal Imaging in Neurology by Hans-Peter Müller. Download full books in PDF and EPUB format.

Multimodal Imaging in Neurology

Multimodal Imaging in Neurology PDF Author: Hans-Peter Müller
Publisher: Morgan & Claypool Publishers
ISBN: 1598295500
Category : Brain
Languages : en
Pages : 85

Book Description
The field of brain imaging is developing at a rapid pace and has greatly advanced the areas of cognitive and clinical neuroscience. The availability of neuroimaging techniques, especially magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and magnetoencephalography (MEG) and magnetic source imaging (MSI) has brought about breakthroughs in neuroscience. To obtain comprehensive information about the activity of the human brain, different analytical approaches should be complemented. Thus, in "intermodal multimodality" imaging, great efforts have been made to combine the highest spatial resolution (MRI, fMRI) with the best temporal resolution (MEG or EEG). "Intramodal multimodality" imaging combines various functional MRI techniques (e.g., fMRI, DTI, and/or morphometric/volumetric analysis). The multimodal approach is conceptually based on the combination of different noninvasive functional neuroimaging tools, their registration and cointegration. In particular, the combination of imaging applications that map different functional systems is useful, such as fMRI as a technique for the localization of cortical function and DTI as a technique for mapping of white matter fiber bundles or tracts. This booklet gives an insight into the wide field of multimodal imaging with respect to concepts, data acquisition, and postprocessing. Examples for intermodal and intramodal multimodality imaging are also demonstrated.

Multimodal Imaging in Neurology

Multimodal Imaging in Neurology PDF Author: Hans-Peter Müller
Publisher: Morgan & Claypool Publishers
ISBN: 1598295500
Category : Brain
Languages : en
Pages : 85

Book Description
The field of brain imaging is developing at a rapid pace and has greatly advanced the areas of cognitive and clinical neuroscience. The availability of neuroimaging techniques, especially magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and magnetoencephalography (MEG) and magnetic source imaging (MSI) has brought about breakthroughs in neuroscience. To obtain comprehensive information about the activity of the human brain, different analytical approaches should be complemented. Thus, in "intermodal multimodality" imaging, great efforts have been made to combine the highest spatial resolution (MRI, fMRI) with the best temporal resolution (MEG or EEG). "Intramodal multimodality" imaging combines various functional MRI techniques (e.g., fMRI, DTI, and/or morphometric/volumetric analysis). The multimodal approach is conceptually based on the combination of different noninvasive functional neuroimaging tools, their registration and cointegration. In particular, the combination of imaging applications that map different functional systems is useful, such as fMRI as a technique for the localization of cortical function and DTI as a technique for mapping of white matter fiber bundles or tracts. This booklet gives an insight into the wide field of multimodal imaging with respect to concepts, data acquisition, and postprocessing. Examples for intermodal and intramodal multimodality imaging are also demonstrated.

Multimodal Imaging In Neurology : Special Focus On Mri Applications And Meg

Multimodal Imaging In Neurology : Special Focus On Mri Applications And Meg PDF Author: Hans-Peter Müller (Dr. rer. nat.)
Publisher:
ISBN: 9781598295528
Category : Brain
Languages : en
Pages : 75

Book Description
The field of brain imaging is developing at a rapid pace and has greatly advanced the areas of cognitive and clinical neuroscience. The availability of neuroimaging techniques, especially magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and magnetoencephalography (MEG) and magnetic source imaging (MSI) has brought about breakthroughs in neuroscience. To obtain comprehensive information about the activity of the human brain, different analytical approaches should be complemented. Thus, in "intermodalmultimodality" imaging, great efforts have been made to combine the highest spatial resolution (MRI, fMRI) with the best temporal resolution (MEG or EEG). "Intramodal multimodality" imaging combines various functional MRI techniques (e.g., fMRI, DTI, and/or morphometric/volumetric analysis). Themultimodal approach is conceptually based on the combination of different noninvasive functional neuroimaging tools, their registration and cointegration. In particular, the combination of imaging applications that map different functional systems is useful, such as fMRI as a technique for the localization of cortical function and DTI as a technique for mapping of white matter fiber bundles/tracts. This booklet gives an insight into the wide field of multimodal imaging with respect to concepts, data acquisition, and postprocessing. Examples for intermodal and intramodal multimodality imaging are also demonstrated.

Probing Brain-Behavior Relationship with Multimodal Imaging: Methods and Clinical Applications

Probing Brain-Behavior Relationship with Multimodal Imaging: Methods and Clinical Applications PDF Author: Bin Jing
Publisher: Frontiers Media SA
ISBN: 2832547591
Category : Science
Languages : en
Pages : 197

Book Description
Nowadays, exploring the brain-behavior relationship via MRI, EEG, fNIRS, and MEG has become a research hotspot further accelerated by the emergence of large-sample open-source datasets, such as UK Biobank, Human Connectome Project, the Adolescent Brain Cognitive Development, the National Institute of Mental Health (NIMH) Intramural Healthy Volunteer Dataset, the TUH EEG CORPUS, and many other multimodal datasets. Many prior studies have conducted various prediction tasks in different populations (from infants to adults; from healthy subjects to patients) with miscellaneous imaging modalities, however, to construct a precise, generalizable, and reproducible brain-behavior relationship is still facing many challenges, for example, individual variability, multi-site heterogeneity, imaging result interpretability, model generalization, low prediction performance, and lack of clinical applications

Neuroimaging

Neuroimaging PDF Author: Yongxia Zhou
Publisher: BoD – Books on Demand
ISBN: 1789844304
Category : Medical
Languages : en
Pages : 142

Book Description
In vivo brain neuroimaging with cutting-edge technologies has achieved great success with high spatial and temporal resolutions. Several distinct medical imaging perspectives such as disease neurobiology, multimodal imaging techniques and applications, large-size clinical trials of neuro-oncology, and bioinformatics with illustrative examples and comprehensive summaries could expand our knowledge of neuroimaging mechanism, methodologies, and applications. This book highlights the possibility and achievement of early detection and multiple neuroimaging biomarkers based on various features for pathophysiological probing and therapeutic prevention. It examines the use of neuroimaging techniques such as magnetic resonance imaging (MRI), electroencephalography (EEG), and near-infrared resonance spectroscopy (NIRS) with specific and innovative biomedical applications. It provides thorough reviews, accurate descriptions, and confirmative evidences of many related important research topics together with up-to-date imaging network management.

Image Fusion in Preclinical Applications

Image Fusion in Preclinical Applications PDF Author: Claudia Kuntner-Hannes
Publisher: Springer
ISBN: 3030029735
Category : Medical
Languages : en
Pages : 212

Book Description
This book provides an accessible and comprehensive overview of the state of the art in multimodal, multiparametric preclinical imaging, covering all the modalities used in preclinical research. The role of different combinations of PET, CT, MR, optical, and optoacoustic imaging methods is examined and explained for a range of applications, from research in oncology, neurology, and cardiology to drug development. Examples of animal studies are highlighted in which multimodal imaging has been pivotal in delivering otherwise unobtainable information. Hardware and software image registration methods and animal-specific factors are also discussed. The readily understandable text is enhanced by numerous informative illustrations that help the reader to appreciate the similarities to, but also the differences from, clinical applications. Image Fusion in Preclinical Applications will be of interest to all who wish to learn more about the use of multimodal/multiparametric imaging as a tool for in vivo investigations in preclinical medical and pharmaceutical research.

Introduction to Human Neuroimaging

Introduction to Human Neuroimaging PDF Author: Hans Op de Beeck
Publisher: Cambridge University Press
ISBN: 1107180309
Category : Mathematics
Languages : en
Pages : 369

Book Description
An accessible primer for courses on human neuroimaging methods, with example research studies, color figures, and practice questions.

Spatiotemporal Techniques in Multimodal Imaging for Brain Mapping and Epilepsy

Spatiotemporal Techniques in Multimodal Imaging for Brain Mapping and Epilepsy PDF Author: Daniel Mordechai Goldenholz
Publisher:
ISBN:
Category :
Languages : en
Pages : 274

Book Description
Abstract: This thesis explored multimodal brain imaging using advanced spatiotemporal techniques. The first set of experiments were based on simulations. Much controversy exists in the literature regarding the differences between magnetoencephalography (MEG) and electroencephalography (EEG), both practically and theoretically. The differences were explored using simulations that evaluated the expected signal-to-noise ratios from reasonable brain sources. MEG and EEG were found to be complementary, with each modality optimally suited to image activity from different areas of the cortical surface. Consequently, evaluations of epileptic patients and general neuroscience experiments will both benefit from simultaneously collected MEG/EEG. The second set of experiments represent an example of MEG combined with magnetic resonance imaging (MRI) and functional MRI (fMRI) applied to healthy subjects. The study set out to resolve two questions relating to shape perception. First, does the brain activate functional areas sequentially during shape perception, as has been suggested in recent literature? Second, which, if any, functional areas are active time-locked with reaction-time? The study found that functional areas are non-sequentially activated, and that area IT is active time-locked with reaction-time. These two points, coupled with the method for multimodal integration, can help further develop our understanding of shape perception in particular, and cortical dynamics in general for healthy subjects. Broadly, these two studies represent practical guidelines for epilepsy evaluations and brain mapping studies. For epilepsy studies, clinicians could combine MEG and EEG to maximize the probability of finding the source of seizures. For brain mapping in general, EEG, MEG, MRI and fMRI can be combined in the methods outlined here to obtain more sophisticated views of cortical dynamics.

Multimodal Imaging in Neurology

Multimodal Imaging in Neurology PDF Author: Hans-Peter Müller
Publisher: Springer Nature
ISBN: 3031016238
Category : Technology & Engineering
Languages : en
Pages : 75

Book Description
The field of brain imaging is developing at a rapid pace and has greatly advanced the areas of cognitive and clinical neuroscience. The availability of neuroimaging techniques, especially magnetic resonance imaging (MRI), functional MRI (fMRI), diffusion tensor imaging (DTI) and magnetoencephalography (MEG) and magnetic source imaging (MSI) has brought about breakthroughs in neuroscience. To obtain comprehensive information about the activity of the human brain, different analytical approaches should be complemented. Thus, in "intermodal multimodality" imaging, great efforts have been made to combine the highest spatial resolution (MRI, fMRI) with the best temporal resolution (MEG or EEG). "Intramodal multimodality" imaging combines various functional MRI techniques (e.g., fMRI, DTI, and/or morphometric/volumetric analysis). The multimodal approach is conceptually based on the combination of different noninvasive functional neuroimaging tools, their registration and cointegration. In particular, the combination of imaging applications that map different functional systems is useful, such as fMRI as a technique for the localization of cortical function and DTI as a technique for mapping of white matter fiber bundles or tracts. This booklet gives an insight into the wide field of multimodal imaging with respect to concepts, data acquisition, and postprocessing. Examples for intermodal and intramodal multimodality imaging are also demonstrated. Table of Contents: Introduction / Neurological Measurement Techniques and First Steps of Postprocessing / Coordinate Transformation / Examples for Multimodal Imaging / Clinical Aspects of Multimodal Imaging / References / Biography

Application of Multimodal Imaging Combined with Artificial Intelligence in Eye Diseases

Application of Multimodal Imaging Combined with Artificial Intelligence in Eye Diseases PDF Author: Xin Huang
Publisher: Frontiers Media SA
ISBN: 2832536107
Category : Science
Languages : en
Pages : 202

Book Description


Simultaneous EEG and FMRI

Simultaneous EEG and FMRI PDF Author: Markus Ullsperger
Publisher: Oxford University Press
ISBN: 0195372735
Category : Medical
Languages : en
Pages : 332

Book Description
One of the major challenges in science is to study and understand the human brain. Numerous methods examining different aspects of brain functions have been developed and employed. To study systemic interactions brain networks in vivo, non-invasive methods such as electroencephalography (EEG) and functional magnetic resonance imaging (fMRI) have been used with great success. However, each of these methods can map only certain, quite selective aspects of brain function while missing others; and the inferences on neuronal processes and information flow are often rather indirect. To overcome these shortcomings of single methods, researchers have attempted to combine methods in order to make optimal use of their advantages while compensating their disadvantages. Hence, it is not surprising that soon after the introduction of fMRI as a neuroimaging method the possibilities of combinations with EEG have been explored.This book is intended to aid researchers who plan to set up a simultaneous EEG-fMRI laboratory and those who are interested in integrating electrophysiological and hemodynamic data. As will be obvious from the different chapters, this is a dynamically developing field in which several approaches are being tested, validated and compared. Currently, there is no one best solution for all problems available, but many promising techniques are emerging. This book shall give a comprehensive overview of these techniques. In addition, it points to open questions and directions for future research.