Multilinear Algebra PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multilinear Algebra PDF full book. Access full book title Multilinear Algebra by Werner Greub. Download full books in PDF and EPUB format.

Multilinear Algebra

Multilinear Algebra PDF Author: Werner Greub
Publisher: Springer Science & Business Media
ISBN: 1461394252
Category : Mathematics
Languages : en
Pages : 303

Book Description
This book is a revised version of the first edition and is intended as a Linear Algebra sequel and companion volume to the fourth edition of (Graduate Texts in Mathematics 23). As before, the terminology and basic results of Linear Algebra are frequently used without refer~nce. In particular, the reader should be familiar with Chapters 1-5 and the first part of Chapter 6 of that book, although other sections are occasionally used. In this new version of Multilinear Algebra, Chapters 1-5 remain essen tially unchanged from the previous edition. Chapter 6 has been completely rewritten and split into three (Chapters 6, 7, and 8). Some of the proofs have been simplified and a substantial amount of new material has been added. This applies particularly to the study of characteristic coefficients and the Pfaffian. The old Chapter 7 remains as it stood, except that it is now Chapter 9. The old Chapter 8 has been suppressed and the material which it con tained (multilinear functions) has been relocated at the end of Chapters 3, 5, and 9. The last two chapters on Clifford algebras and their representations are completely new. In view of the growing importance of Clifford algebras and the relatively few references available, it was felt that these chapters would be useful to both mathematicians and physicists.

Multilinear Algebra

Multilinear Algebra PDF Author: Werner Greub
Publisher: Springer Science & Business Media
ISBN: 1461394252
Category : Mathematics
Languages : en
Pages : 303

Book Description
This book is a revised version of the first edition and is intended as a Linear Algebra sequel and companion volume to the fourth edition of (Graduate Texts in Mathematics 23). As before, the terminology and basic results of Linear Algebra are frequently used without refer~nce. In particular, the reader should be familiar with Chapters 1-5 and the first part of Chapter 6 of that book, although other sections are occasionally used. In this new version of Multilinear Algebra, Chapters 1-5 remain essen tially unchanged from the previous edition. Chapter 6 has been completely rewritten and split into three (Chapters 6, 7, and 8). Some of the proofs have been simplified and a substantial amount of new material has been added. This applies particularly to the study of characteristic coefficients and the Pfaffian. The old Chapter 7 remains as it stood, except that it is now Chapter 9. The old Chapter 8 has been suppressed and the material which it con tained (multilinear functions) has been relocated at the end of Chapters 3, 5, and 9. The last two chapters on Clifford algebras and their representations are completely new. In view of the growing importance of Clifford algebras and the relatively few references available, it was felt that these chapters would be useful to both mathematicians and physicists.

Multilinear Algebra

Multilinear Algebra PDF Author: Russell Merris
Publisher: CRC Press
ISBN: 9789056990787
Category : Mathematics
Languages : en
Pages : 344

Book Description
The prototypical multilinear operation is multiplication. Indeed, every multilinear mapping can be factored through a tensor product. Apart from its intrinsic interest, the tensor product is of fundamental importance in a variety of disciplines, ranging from matrix inequalities and group representation theory, to the combinatorics of symmetric functions, and all these subjects appear in this book. Another attraction of multilinear algebra lies in its power to unify such seemingly diverse topics. This is done in the final chapter by means of the rational representations of the full linear group. Arising as characters of these representations, the classical Schur polynomials are one of the keys to unification. Prerequisites for the book are minimized by self-contained introductions in the early chapters. Throughout the text, some of the easier proofs are left to the exercises, and some of the more difficult ones to the references.

Multilinear Algebra

Multilinear Algebra PDF Author: Russell Merris
Publisher: CRC Press
ISBN: 1498714900
Category : Mathematics
Languages : en
Pages : 341

Book Description
The prototypical multilinear operation is multiplication. Indeed, every multilinear mapping can be factored through a tensor product. Apart from its intrinsic interest, the tensor product is of fundamental importance in a variety of disciplines, ranging from matrix inequalities and group representation theory, to the combinatorics of symmetric func

Elements Of Linear And Multilinear Algebra

Elements Of Linear And Multilinear Algebra PDF Author: John M Erdman
Publisher: World Scientific
ISBN: 9811222746
Category : Mathematics
Languages : en
Pages : 234

Book Description
This set of notes is an activity-oriented introduction to linear and multilinear algebra. The great majority of the most elementary results in these subjects are straightforward and can be verified by the thoughtful student. Indeed, that is the main point of these notes — to convince the beginner that the subject is accessible. In the material that follows there are numerous indicators that suggest activity on the part of the reader: words such as 'proposition', 'example', 'theorem', 'exercise', and 'corollary', if not followed by a proof (and proofs here are very rare) or a reference to a proof, are invitations to verify the assertions made.These notes are intended to accompany an (academic) year-long course at the advanced undergraduate or beginning graduate level. (With judicious pruning most of the material can be covered in a two-term sequence.) The text is also suitable for a lecture-style class, the instructor proving some of the results while leaving others as exercises for the students.This book has tried to keep the facts about vector spaces and those about inner product spaces separate. Many beginning linear algebra texts conflate the material on these two vastly different subjects.

Tensors: Geometry and Applications

Tensors: Geometry and Applications PDF Author: J. M. Landsberg
Publisher: American Mathematical Soc.
ISBN: 0821869078
Category : Mathematics
Languages : en
Pages : 464

Book Description
Tensors are ubiquitous in the sciences. The geometry of tensors is both a powerful tool for extracting information from data sets, and a beautiful subject in its own right. This book has three intended uses: a classroom textbook, a reference work for researchers in the sciences, and an account of classical and modern results in (aspects of) the theory that will be of interest to researchers in geometry. For classroom use, there is a modern introduction to multilinear algebra and to the geometry and representation theory needed to study tensors, including a large number of exercises. For researchers in the sciences, there is information on tensors in table format for easy reference and a summary of the state of the art in elementary language. This is the first book containing many classical results regarding tensors. Particular applications treated in the book include the complexity of matrix multiplication, P versus NP, signal processing, phylogenetics, and algebraic statistics. For geometers, there is material on secant varieties, G-varieties, spaces with finitely many orbits and how these objects arise in applications, discussions of numerous open questions in geometry arising in applications, and expositions of advanced topics such as the proof of the Alexander-Hirschowitz theorem and of the Weyman-Kempf method for computing syzygies.

Tensor Analysis on Manifolds

Tensor Analysis on Manifolds PDF Author: Richard L. Bishop
Publisher: Courier Corporation
ISBN: 0486139239
Category : Mathematics
Languages : en
Pages : 290

Book Description
DIVProceeds from general to special, including chapters on vector analysis on manifolds and integration theory. /div

Manifolds, Tensors and Forms

Manifolds, Tensors and Forms PDF Author: Paul Renteln
Publisher: Cambridge University Press
ISBN: 1107042194
Category : Mathematics
Languages : en
Pages : 343

Book Description
Comprehensive treatment of the essentials of modern differential geometry and topology for graduate students in mathematics and the physical sciences.

Multilinear Algebra

Multilinear Algebra PDF Author: D. G. Northcott
Publisher: Cambridge University Press
ISBN: 9780521090605
Category : Mathematics
Languages : en
Pages : 0

Book Description
Multilinear algebra has important applications in many different areas of mathematics but is usually learned in a rather haphazard fashion. The aim of this book is to provide a readable and systematic account of multilinear algebra at a level suitable for graduate students. Professor Northcott gives a thorough treatment of topics such as tensor, exterior, Grassmann, Hopf and co-algebras and ends each chapter with a section entitled 'Comments and Exercises'. The comments contain convenient summaries and discussion of the content whilst the exercises provide an opportunity to test understanding and add extra material. Complete solutions are provided for those exercises that are particularly important or used later in the book. The volume as a whole is based on advanced lectures given by the author at the University of Sheffield.

Algebra: Chapter 0

Algebra: Chapter 0 PDF Author: Paolo Aluffi
Publisher: American Mathematical Soc.
ISBN: 147046571X
Category : Education
Languages : en
Pages : 713

Book Description
Algebra: Chapter 0 is a self-contained introduction to the main topics of algebra, suitable for a first sequence on the subject at the beginning graduate or upper undergraduate level. The primary distinguishing feature of the book, compared to standard textbooks in algebra, is the early introduction of categories, used as a unifying theme in the presentation of the main topics. A second feature consists of an emphasis on homological algebra: basic notions on complexes are presented as soon as modules have been introduced, and an extensive last chapter on homological algebra can form the basis for a follow-up introductory course on the subject. Approximately 1,000 exercises both provide adequate practice to consolidate the understanding of the main body of the text and offer the opportunity to explore many other topics, including applications to number theory and algebraic geometry. This will allow instructors to adapt the textbook to their specific choice of topics and provide the independent reader with a richer exposure to algebra. Many exercises include substantial hints, and navigation of the topics is facilitated by an extensive index and by hundreds of cross-references.

Introduction to Vectors and Tensors

Introduction to Vectors and Tensors PDF Author: Ray M. Bowen
Publisher: Springer
ISBN:
Category : Mathematics
Languages : en
Pages : 224

Book Description
To Volume 1 This work represents our effort to present the basic concepts of vector and tensor analysis. Volume 1 begins with a brief discussion of algebraic structures followed by a rather detailed discussion of the algebra of vectors and tensors. Volume 2 begins with a discussion of Euclidean manifolds, which leads to a development of the analytical and geometrical aspects of vector and tensor fields. We have not included a discussion of general differentiable manifolds. However, we have included a chapter on vector and tensor fields defined on hypersurfaces in a Euclidean manifold. In preparing this two-volume work, our intention was to present to engineering and science students a modern introduction to vectors and tensors. Traditional courses on applied mathematics have emphasized problem-solving techniques rather than the systematic development of concepts. As a result, it is possible for such courses to become terminal mathematics courses rather than courses which equip the student to develop his or her understanding further.