Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems PDF full book. Access full book title Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems by Kyoungnam Seo. Download full books in PDF and EPUB format.

Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems

Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems PDF Author: Kyoungnam Seo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
(MMSE) multi-user detector and transmit power control, which results in an enhanced signal-to-noise ratio (SNR) and reduced transmit power consumption. In PLC systems, OFDM is combined with a bit-loading algorithm to increase throughput. Since the number of bits to carry at each sub-carrier is assigned by the SNR level, the throughput of the system is directly affected by impulsive noise. Our study focuses on the detection and mitigation of impulsive noise in PLC networks. We propose a time domain impulsive noise mitigation algorithm. This two-step iterative algorithm improves the data rate by up to 15 percent with a small addition of one OFDM block size memory. Finally, we consider SS-MC-MA systems that take advantage of DMT's adaptive bit-loading technique and CDMA's multi-user channel access. To further increase the throughput, we propose a dynamic sub-carrier allocation algorithm in SS-MC-MA-based PLC systems. Systems with the proposed algorithm show the average throughput increase up to 20 percent comparing to the conventional DMT systems and 10 percent comparing to the existing SS-MC-MA-based PLC systems.

Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems

Multi-user Interference Reduction and Throughput Enhancement in OFDM-based Multicarrier Communication Systems PDF Author: Kyoungnam Seo
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
(MMSE) multi-user detector and transmit power control, which results in an enhanced signal-to-noise ratio (SNR) and reduced transmit power consumption. In PLC systems, OFDM is combined with a bit-loading algorithm to increase throughput. Since the number of bits to carry at each sub-carrier is assigned by the SNR level, the throughput of the system is directly affected by impulsive noise. Our study focuses on the detection and mitigation of impulsive noise in PLC networks. We propose a time domain impulsive noise mitigation algorithm. This two-step iterative algorithm improves the data rate by up to 15 percent with a small addition of one OFDM block size memory. Finally, we consider SS-MC-MA systems that take advantage of DMT's adaptive bit-loading technique and CDMA's multi-user channel access. To further increase the throughput, we propose a dynamic sub-carrier allocation algorithm in SS-MC-MA-based PLC systems. Systems with the proposed algorithm show the average throughput increase up to 20 percent comparing to the conventional DMT systems and 10 percent comparing to the existing SS-MC-MA-based PLC systems.

Multi-Carrier Digital Communications

Multi-Carrier Digital Communications PDF Author: Ahmad R.S. Bahai
Publisher: Springer Science & Business Media
ISBN: 030646974X
Category : Technology & Engineering
Languages : en
Pages : 224

Book Description
Multi-carrier modulation, in particular orthogonal frequency division multiplexing (OFDM), has been successfully applied to a wide variety of digital communications applications for several years. Although OFDM has been chosen as the physical layer standard for a diversity of important systems, the theory, algorithms, and implementation techniques remain subjects of current interest. This book is intended to be a concise summary of the present state of the art of the theory and practice of OFDM technology. This book offers a unified presentation of OFDM theory and high speed and wireless applications. In particular, ADSL, wireless LAN, and digital broadcasting technologies are explained. It is hoped that this book will prove valuable both to developers of such systems, and to researchers and graduate students involved in analysis of digital communications, and will remain a valuable summary of the technology, providing an understanding of new advances as well as the present core technology.

Advanced Multicarrier Technologies for Future Radio Communication

Advanced Multicarrier Technologies for Future Radio Communication PDF Author: Hanna Bogucka
Publisher: John Wiley & Sons
ISBN: 1119168899
Category : Technology & Engineering
Languages : en
Pages : 304

Book Description
A practical review of state-of-the-art non-contiguous multicarrier technologies that are revolutionizing how data is transmitted, received, and processed This book addresses the advantages and the limitations of modern multicarrier technologies and how to meet the challenges they pose using non-contiguous multicarrier technologies and novel algorithms that enhance spectral efficiency, interference robustness, and reception performance. It explores techniques using non-contiguous subcarriers which allow for flexible spectrum aggregation while achieving high spectral efficiency and flexible transmission and reception at lower OSI layers. These include non-contiguous orthogonal frequency division multiplexing (NC-OFDM), its enhanced version, non-contiguous filter-bank-based multicarrier (NC-FBMC), and generalized multicarrier. Following an overview of current multicarrier technologies for radio communication, the authors examine particular properties of these technologies that allow for more efficient usage within key directions of 5G. They examine the principles of NC-OFDM and discuss efficient transmitter and receiver design. They present the principles of FBMC modulation and discuss key challenges for FBMC communications while comparing performance results with traditional OFDM. They move on from there to a fascinating discussion of GMC modulation within which they clearly demonstrate how that technology encompasses all of the advantages of previously discussed techniques, as well as all imaginable multi- and single-carrier waveforms. Addresses the problems and limitations of current multicarrier technologies (OFDM) Describes innovative techniques using non-contiguous multicarrier waveforms as well as filter-band based and generalized multicarrier waveforms Provides a thorough review of the practical limitations and solutions for evolving and breakthrough 5G communication technologies Explores the future outlook for non-contiguous multicarrier technologies as regards their greater industrial realization, hardware practicality, and other challenges Advanced Multicarrier Technologies for Future Radio Communication: 5G and Beyondis an indispensable working resource fortelecommunication engineers, researchers and academics, as well as graduate and post-graduate students of telecommunications. At the same time, it provides a fascinating look at the shape of things to come for telecommunication industry executives, telecom operators, regulators, policy makers, and economists.

Multicarrier Communications

Multicarrier Communications PDF Author: Lie-Liang Yang
Publisher: John Wiley & Sons
ISBN: 047074023X
Category : Technology & Engineering
Languages : en
Pages : 696

Book Description
Benefiting from both time-domain and frequency-domain signal processing techniques, multicarrier systems have the potential for achieving high spectral-efficiency, high-flexibility and low-complexity wireless communications. Multicarrier techniques therefore constitute the promising techniques for implementation of future generations of wideband, broadband and ultra-wideband systems. Multicarrier Communications offers comprehensive and in-depth evaluation of numerous topics in the area, covering the fundamental principles of spread-spectrum and multicarrier CDMA as well as more advanced topics such as multiuser detection (MUD), multiuser transmitter preprocessing (MUTP), MIMO and space-time processing. It examines OFDM and various multicarrier CDMA within an unified framework and provides analytical approaches and formulas for error-performance evaluation of numerous multicarrier systems. Examines MUD and MUTP in parallel to illustrate the strong duality between receiver optimization and transmitter optimization Comprehensively establishes the theory of noncoherent MUD and noncoherent interference suppression Details the body of knowledge on MIMO theory and space-time multicarrier communications Contains tables, diagrams and figures to illustrate the performance results. Practicing electrical engineers and researchers in wireless communications will find Multicarrier Communications an invaluable guide. It will also be of interest to senior undergraduate and graduate students on wireless communications courses.

Multi-Carrier and Spread Spectrum Systems

Multi-Carrier and Spread Spectrum Systems PDF Author: Khaled Fazel
Publisher: John Wiley & Sons
ISBN: 0470714239
Category : Technology & Engineering
Languages : en
Pages : 384

Book Description
The technological progress in multi-carrier (MC) modulation led orthogonal frequency division multiplexing (OFDM) to become an important part of beyond 3G cellular mobile communication standards, including LTE and WiMAX. In addition, the flexibility offered by the spread spectrum (SS) and time division multiplexing (TDM) techniques motivated many researchers to investigate several MC combined multiple access schemes, such as MC-CDMA, OFDMA and MC-TDMA. These schemes benefit from the advantages of each sub-system and offer high flexibility, high spectral efficiency, simple detection strategies and narrow-band interference rejection capability. Multi-Carrier and Spread Spectrum Systems is one of the first books to describe and analyze the basic concepts of multi-carrier OFDM transmission and its combination with spread spectrum (MC-CDMA). The different architectures and detection strategies as well as baseband-related transceiver components are explained. This includes topics like FEC channel coding and decoding, modulation and demodulation (IFFT/FFT), digital I/Q-generation, time and frequency synchronisation, channel estimation, frequency domain equalization and RF aspects such as phase noise and non-linearity issues. Concrete examples of its applications for cellular mobile communication systems (B3G/4G) are given. Further derivatives of MC-SS (such as OFDMA, SS-MC-MA and DFT-spread OFDM) and their corresponding applications in the LTE, WiMAX, WLAN and DVB-RCT standards are detailed. Capacity and flexibility enhancements of multi-carrier OFDM systems by different MIMO diversity techniques such as space time/frequency coding (STC, SFC) and software defined radio concepts are also described. Written in a highly accessible manner this book provides a unique reference on the topics of multi-carrier and spread spectrum communications, assisting 4G engineers with their implementation. Fully updated new edition of successful text, including two new chapters on LTE and WiMAX Describes in detail new applications of OFDM in mobile communication standards Examines all multi-carrier spread spectrum schemes, with in-depth analysis, from theory to practice Introduces the essentials of important wireless standards based on multi-carrier/spread spectrum techniques.

OFDM Systems for Wireless Communications

OFDM Systems for Wireless Communications PDF Author: Adarsh Narasimhamurthy
Publisher: Springer Nature
ISBN: 3031015134
Category : Technology & Engineering
Languages : en
Pages : 68

Book Description
Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution. This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is a good choice as a modulation that can transmit at high data rates. The system-level approach we shall pursue will also point out the disadvantages of OFDM systems especially in the context of peak to average ratio, and carrier frequency synchronization. Finally, simulation of OFDM systems will be given due prominence. Simple MATLAB programs are provided for bit error rate simulation using a discrete-time OFDM representation. Software is also provided to simulate the effects of inter-block-interference, inter-carrier-interference and signal clipping on the error rate performance. Different components of the OFDM system are described, and detailed implementation notes are provided for the programs. The program can be downloaded here. Table of Contents: Introduction / Modeling Wireless Channels / Baseband OFDM System / Carrier Frequency Offset / Peak to Average Power Ratio / Simulation of the Performance of OFDM Systems / Conclusions

New Signal Processing Approaches to Peak-to-average Power Ratio Reduction in Multicarrier Systems

New Signal Processing Approaches to Peak-to-average Power Ratio Reduction in Multicarrier Systems PDF Author: Ki-taek Bae
Publisher:
ISBN:
Category :
Languages : en
Pages : 294

Book Description
Multi-carrier systems based on orthogonal frequency division multiplexing (OFDM) are efficient technologies for the implementation of broadband wireless communication systems. OFDM is widely used and has been adopted for current mobile broadband wireless communication systems such as IEEE 802.a/g wireless LANs, WiMAX, 3GPP LTE, and DVB-T/H digital video broadcasting systems. Despite their many advantages, however, OFDM-based systems suffer from potentially high peak-to-average power ratio (PAR). Since communication systems typically include nonlinear devices such as RF power amplifiers (PA) and digital-to-analog converters (DAC), high PAR results in increased symbol error rates and spectral radiation. To mitigate these nonlinear effects and to avoid nonlinear saturation effects of the PA, the operating point of a signal with high peak power must be backed off into the linear region of the PA. This so-called output backoff (OBO) results in a reduced power conversion efficiency which limits the battery life for mobile applications, reduces the coverage range, and increases both the cost of the PA and power consumption in the cellular base station. With the increasing demand for high energy efficiency, low power consumption, and greenhouse gas emission reduction, PAR reduction is a key technique in the design of practical OFDM systems. Motivated by the PAR reduction problem associated with multi-carrier systems, such as OFDM, this research explores the state of the art of PAR reduction techniques and develops new signal processing techniques that can achieve a minimum PAR for given system parameters and that are compatible with the appropriate standards. The following are the three principal contributions of this dissertation research. First, we present and derive the semi-analytical results for the output of asymptotic iterative clipping and filtering. This work provides expressions and analytical techniques for estimating the attenuation factor, error vector magnitude, and bit-error-rate (BER), using a noise enhancement factor that is obtained by simulation. With these semi-analytical results, we obtain a relationship between the BER and the target clipping level for asymptotic iterative clipping and filtering. These results serve as a performance benchmark for designing PAR reduction techniques using iterative clipping and filtering in OFDM systems. Second, we analyze the impact of the selected mapping (SLM) technique on BER performance of OFDM systems in an additive white Gaussian noise channel in the presence of nonlinearity. We first derive a closed-form expression for the envelope power distribution in an OFDM system with SLM. Then, using this derived envelope power distribution, we investigate the BER performance and the total degradation (TD) of OFDM systems with SLM under the existence of nonlinearity. As a result, we obtain the TD-minimizing peak backoff (PBO) and clipping ratio as functions of the number of candidate signals in SLM. Third, we propose an adaptive clipping control algorithm and pilot-aided algorithm to address a fundamental issue associated with two low-complexity PAR reduction techniques, namely, tone reservation (TR) and active constellation extension (ACE). Specifically, we discovered that the existing low-complexity algorithms have a low clipping ratio problem in that they can not achieve the minimum PAR when the target clipping level is set below the initially unknown optimum value. Using our proposed algorithms, we overcome this problem and demonstrate that additional PAR reduction is obtained for any low value of the initial target clipping ratio.

OFDM Systems for Wireless Communications

OFDM Systems for Wireless Communications PDF Author: Adarsh B. Narasimhamurthy
Publisher: Morgan & Claypool Publishers
ISBN: 1598297015
Category : Computers
Languages : en
Pages : 79

Book Description
Orthogonal Frequency Division Multiplexing (OFDM) systems are widely used in the standards for digital audio/video broadcasting, WiFi and WiMax. Being a frequency-domain approach to communications, OFDM has important advantages in dealing with the frequency-selective nature of high data rate wireless communication channels. As the needs for operating with higher data rates become more pressing, OFDM systems have emerged as an effective physical-layer solution. This short monograph is intended as a tutorial which highlights the deleterious aspects of the wireless channel and presents why OFDM is a good choice as a modulation that can transmit at high data rates. The system-level approach we shall pursue will also point out the disadvantages of OFDM systems especially in the context of peak to average ratio, and carrier frequency synchronization. Finally, simulation of OFDM systems will be given due prominence. Simple MATLAB programs are provided for bit error rate simulation using a discrete-time OFDM representation. Software is also provided to simulate the effects of inter-block-interference, inter-carrier-interference and signal clipping on the error rate performance. Different components of the OFDM system are described, and detailed implementation notes are provided for the programs. The program can be downloaded here. Table of Contents: Introduction / Modeling Wireless Channels / Baseband OFDM System / Carrier Frequency Offset / Peak to Average Power Ratio / Simulation of the Performance of OFDM Systems / Conclusions

Self-interference Handling in OFDM Based Wireless Communication Systems

Self-interference Handling in OFDM Based Wireless Communication Systems PDF Author: Tevfik Yücek
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
ABSTRACT: Orthogonal Frequency Division Multiplexing (OFDM) is a multi-carrier modulation scheme that provides efficient bandwidth utilization and robustness against time dispersive channels. This thesis deals with self-interference, or the corruption of desired signal by itself, in OFDM systems. Inter-symbol Interference (ISI) and Inter-carrier Interference (ICI) are two types of self-interference in OFDM systems. Cyclic prefix is one method to prevent the ISI which is the interference of the echoes of a transmitted signal with the original transmitted signal. The length of cyclic prefix required to remove ISI depends on the channel conditions, and usually it is chosen according to the worst case channel scenario. Methods to find the required parameters to adapt the length of the cyclic prefix to the instantaneous channel conditions are investigated.

OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting

OFDM and MC-CDMA for Broadband Multi-User Communications, WLANs and Broadcasting PDF Author: Lajos Hanzo
Publisher: John Wiley & Sons
ISBN: 0470861800
Category : Technology & Engineering
Languages : en
Pages : 1014

Book Description
Orthogonal frequency-division multiplexing (OFDM) is a method of digital modulation in which a signal is split into several narrowband channels at different frequencies. CDMA is a form of multiplexing, which allows numerous signals to occupy a single transmission channel, optimising the use of available bandwidth. Multiplexing is sending multiple signals or streams of information on a carrier at the same time in the form of a single, complex signal and then recovering the separate signals at the receiving end. Multi-Carrier (MC) CDMA is a combined technique of Direct Sequence (DS) CDMA (Code Division Multiple Access) and OFDM techniques. It applies spreading sequences in the frequency domain. Wireless communications has witnessed a tremendous growth during the past decade and further spectacular enabling technology advances are expected in an effort to render ubiquitous wireless connectivity a reality. This technical in-depth book is unique in its detailed exposure of OFDM, MIMO-OFDM and MC-CDMA. A further attraction of the joint treatment of these topics is that it allows the reader to view their design trade-offs in a comparative context. Divided into three main parts: Part I provides a detailed exposure of OFDM designed for employment in various applications Part II is another design alternative applicable in the context of OFDM systems where the channel quality fluctuations observed are averaged out with the aid of frequency-domain spreading codes, which leads to the concept of MC-CDMA Part III discusses how to employ multiple antennas at the base station for the sake of supporting multiple users in the uplink Portrays the entire body of knowledge currently available on OFDM Provides the first complete treatment of OFDM, MIMO(Multiple Input Multiple Output)-OFDM and MC-CDMA Considers the benefits of channel coding and space time coding in the context of various application examples and features numerous complete system design examples Converts the lessons of Shannon’s information theory into design principles applicable to practical wireless systems Combines the benefits of a textbook with a research monograph where the depth of discussions progressively increase throughout the book This all-encompassing self-contained treatment will appeal to researchers, postgraduate students and academics, practising research and development engineers working for wireless communications and computer networking companies and senior undergraduate students and technical managers.