Multi-sensor Fusion for Autonomous Driving PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi-sensor Fusion for Autonomous Driving PDF full book. Access full book title Multi-sensor Fusion for Autonomous Driving by Xinyu Zhang. Download full books in PDF and EPUB format.

Multi-sensor Fusion for Autonomous Driving

Multi-sensor Fusion for Autonomous Driving PDF Author: Xinyu Zhang
Publisher: Springer Nature
ISBN: 9819932807
Category :
Languages : en
Pages : 237

Book Description


Multi-sensor Fusion for Autonomous Driving

Multi-sensor Fusion for Autonomous Driving PDF Author: Xinyu Zhang
Publisher: Springer Nature
ISBN: 9819932807
Category :
Languages : en
Pages : 237

Book Description


Sensor Fusion for 3D Object Detection for Autonomous Vehicles

Sensor Fusion for 3D Object Detection for Autonomous Vehicles PDF Author: Yahya Massoud
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Thanks to the major advancements in hardware and computational power, sensor technology, and artificial intelligence, the race for fully autonomous driving systems is heating up. With a countless number of challenging conditions and driving scenarios, researchers are tackling the most challenging problems in driverless cars. One of the most critical components is the perception module, which enables an autonomous vehicle to "see" and "understand" its surrounding environment. Given that modern vehicles can have large number of sensors and available data streams, this thesis presents a deep learning-based framework that leverages multimodal data - i.e. sensor fusion, to perform the task of 3D object detection and localization. We provide an extensive review of the advancements of deep learning-based methods in computer vision, specifically in 2D and 3D object detection tasks. We also study the progress of the literature in both single-sensor and multi-sensor data fusion techniques. Furthermore, we present an in-depth explanation of our proposed approach that performs sensor fusion using input streams from LiDAR and Camera sensors, aiming to simultaneously perform 2D, 3D, and Bird's Eye View detection. Our experiments highlight the importance of learnable data fusion mechanisms and multi-task learning, the impact of different CNN design decisions, speed-accuracy tradeoffs, and ways to deal with overfitting in multi-sensor data fusion frameworks.

Research on a Lidar Based Multi-sensor Fusion Localization System for High-Dynamic Autonomous Driving

Research on a Lidar Based Multi-sensor Fusion Localization System for High-Dynamic Autonomous Driving PDF Author: 汪聖倫
Publisher:
ISBN:
Category :
Languages : en
Pages : 71

Book Description


Application of Multi-Sensor Fusion in Autonomous Vehicle Localization Under Sensor Anomalies

Application of Multi-Sensor Fusion in Autonomous Vehicle Localization Under Sensor Anomalies PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 91

Book Description


Theories and Practices of Self-Driving Vehicles

Theories and Practices of Self-Driving Vehicles PDF Author: Qingguo Zhou
Publisher: Elsevier
ISBN: 0323994490
Category : Technology & Engineering
Languages : en
Pages : 346

Book Description
Self-driving vehicles are a rapidly growing area of research and expertise. Theories and Practice of Self-Driving Vehicles presents a comprehensive introduction to the technology of self driving vehicles across the three domains of perception, planning and control. The title systematically introduces vehicle systems from principles to practice, including basic knowledge of ROS programming, machine and deep learning, as well as basic modules such as environmental perception and sensor fusion. The book introduces advanced control algorithms as well as important areas of new research. This title offers engineers, technicians and students an accessible handbook to the entire stack of technology in a self-driving vehicle. Theories and Practice of Self-Driving Vehicles presents an introduction to self-driving vehicle technology from principles to practice. Ten chapters cover the full stack of driverless technology for a self-driving vehicle. Written by two authors experienced in both industry and research, this book offers an accessible and systematic introduction to self-driving vehicle technology. Provides a comprehensive introduction to the technology stack of a self-driving vehicle Covers the three domains of perception, planning and control Offers foundational theory and best practices Introduces advanced control algorithms and high-potential areas of new research Gives engineers, technicians and students an accessible handbook to self-driving vehicle technology and applications

Multi-Sensor Information Fusion

Multi-Sensor Information Fusion PDF Author: Xue-Bo Jin
Publisher: MDPI
ISBN: 3039283022
Category : Technology & Engineering
Languages : en
Pages : 602

Book Description
This book includes papers from the section “Multisensor Information Fusion”, from Sensors between 2018 to 2019. It focuses on the latest research results of current multi-sensor fusion technologies and represents the latest research trends, including traditional information fusion technologies, estimation and filtering, and the latest research, artificial intelligence involving deep learning.

Multisensor Fusion and Integration for Intelligent Systems

Multisensor Fusion and Integration for Intelligent Systems PDF Author: Lee Suk-han
Publisher: Springer Science & Business Media
ISBN: 354089859X
Category : Technology & Engineering
Languages : en
Pages : 476

Book Description
The ?eld of multi-sensor fusion and integration is growing into signi?cance as our societyisintransitionintoubiquitouscomputingenvironmentswithroboticservices everywhere under ambient intelligence. What surround us are to be the networks of sensors and actuators that monitor our environment, health, security and safety, as well as the service robots, intelligent vehicles, and autonomous systems of ever heightened autonomy and dependability with integrated heterogeneous sensors and actuators. The ?eld of multi-sensor fusion and integration plays key role for m- ing the above transition possible by providing fundamental theories and tools for implementation. This volume is an edition of the papers selected from the 7th IEEE International Conference on Multi-Sensor Integration and Fusion, IEEE MFI‘08, held in Seoul, Korea, August 20–22, 2008. Only 32 papers out of the 122 papers accepted for IEEE MFI’08 were chosen and requested for revision and extension to be included in this volume. The 32 contributions to this volume are organized into three parts: Part I is dedicated to the Theories in Data and Information Fusion, Part II to the Multi-Sensor Fusion and Integration in Robotics and Vision, and Part III to the Applications to Sensor Networks and Ubiquitous Computing Environments. To help readers understand better, a part summary is included in each part as an introduction. The summaries of Parts I, II, and III are prepared respectively by Prof. Hanseok Ko, Prof. Sukhan Lee and Prof. Hernsoo Hahn.

Sensor Fusion in Localization, Mapping and Tracking

Sensor Fusion in Localization, Mapping and Tracking PDF Author: Constantin Wellhausen
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Making autonomous driving possible requires extensive information about the surroundings as well as the state of the vehicle. While specific information can be obtained through singular sensors, a full estimation requires a multi sensory approach, including redundant sources of information to increase robustness. This thesis gives an overview of tasks that arise in sensor fusion in autonomous driving, and presents solutions at a high level of detail, including derivations and parameters where required to enable re-implementation. The thesis includes theoretical considerations of the approaches as well as practical evaluations. Evaluations are also included for approaches that did not prove to solve their tasks robustly. This follows the belief that both results further the state of the art by giving researchers ideas about suitable and unsuitable approaches, where otherwise the unsuitable approaches may be re-implemented multiple times with similar results. The thesis focuses on model-based methods, also referred to in the following as classical methods, with a special focus on probabilistic and evidential theories. Methods based on deep learning are explicitly not covered to maintain explainability and robustness which would otherwise strongly rely on the available training data. The main focus of the work lies in three main fields of autonomous driving: localization, which estimates the state of the ego-vehicle, mapping or obstacle detection, where drivable areas are identified, and object detection and tracking, which estimates the state of all surrounding traffic participants. All algorithms are designed with the requirements of autonomous driving in mind, with a focus on robustness, real-time capability and usability of the approaches in all potential scenarios that may arise in urban driving. In localization the state of the vehicle is determined. While traditionally global positioning systems such as a Global Navigation Satellite System (GNSS) are often used for this task, they are prone to errors and may produce jumps in the position estimate which may cause unexpected and dangerous behavior. The focus of research in this thesis is the development of a localization system which produces a smooth state estimate without any jumps. For this two localization approaches are developed and executed in parallel. One localization is performed without global information to avoid jumps. This however only provides odometry, which drifts over time and does not give global positioning. To provide this information the second localization includes GNSS information, thus providing a global estimate which is free of global drift. Additionally the use of LiDAR odometry for improving the localization accuracy is evaluated. For mapping the focus of this thesis is on providing a computationally efficient mapping system which is capable of being used in arbitrarily large areas with no predefined size. This is achieved by mapping only the direct environment of the vehicle, with older information in the map being discarded. This is motivated by the observation that the environment in autonomous driving is highly dynamic and must be mapped anew every time the vehicles sensors observe an area. The provided map gives subsequent algorithms information about areas where the vehicle can or cannot drive. For this an occupancy grid map is used, which discretizes the map into cells of a fixed size, with each cell estimating whether its corresponding space in the world is occupied. However the grid map is not created for the entire area which could potentially be visited, as this may be very large and potentially impossible to represent in the working memory. Instead the map is created only for a window around the vehicle, with the vehicle roughly in the center. A hierarchical map organization is used to allow efficient moving of the window as the vehicle moves through an area. For the hierarchical map different data structures are evaluated for their time and space complexity in order to find the most suitable implementation for the presented mapping approach. Finally for tracking a late-fusion approach to the multi-sensor fusion task of estimating states of all other traffic participants is presented. Object detections are obtained from LiDAR, camera and Radar sensors, with an additional source of information being obtained from vehicle-to-everything communication which is also fused in the late fusion. The late fusion is developed for easy extendability and with arbitrary object detection algorithms in mind. For the first evaluation it relies on black box object detections provided by the sensors. In the second part of the research in object tracking multiple algorithms for object detection on LiDAR data are evaluated for the use in the object tracking framework to ease the reliance on black box implementations. A focus is set on detecting objects from motion, where three different approaches are evaluated for motion estimation in LiDAR data: LiDAR optical flow, evidential dynamic mapping and normal distribution transforms. The thesis contains both theoretical contributions and practical implementation considerations for the presented approaches with a high degree of detail including all necessary derivations. All results are implemented and evaluated on an autonomous vehicle and real-world data. With the developed algorithms autonomous driving is realized for urban areas.

Application of Multi-Sensor Fusion for Cascade Landmark Recognition and Vehicle Localization for Autonomous Driving

Application of Multi-Sensor Fusion for Cascade Landmark Recognition and Vehicle Localization for Autonomous Driving PDF Author: 王昱翔
Publisher:
ISBN:
Category :
Languages : en
Pages : 83

Book Description


Multisensor Data Fusion

Multisensor Data Fusion PDF Author: Hassen Fourati
Publisher: CRC Press
ISBN: 1351830880
Category : Technology & Engineering
Languages : en
Pages : 628

Book Description
Multisensor Data Fusion: From Algorithms and Architectural Design to Applications covers the contemporary theory and practice of multisensor data fusion, from fundamental concepts to cutting-edge techniques drawn from a broad array of disciplines. Featuring contributions from the world’s leading data fusion researchers and academicians, this authoritative book: Presents state-of-the-art advances in the design of multisensor data fusion algorithms, addressing issues related to the nature, location, and computational ability of the sensors Describes new materials and achievements in optimal fusion and multisensor filters Discusses the advantages and challenges associated with multisensor data fusion, from extended spatial and temporal coverage to imperfection and diversity in sensor technologies Explores the topology, communication structure, computational resources, fusion level, goals, and optimization of multisensor data fusion system architectures Showcases applications of multisensor data fusion in fields such as medicine, transportation's traffic, defense, and navigation Multisensor Data Fusion: From Algorithms and Architectural Design to Applications is a robust collection of modern multisensor data fusion methodologies. The book instills a deeper understanding of the basics of multisensor data fusion as well as a practical knowledge of the problems that can be faced during its execution.