Multi-Scale Approaches in Drug Discovery

Multi-Scale Approaches in Drug Discovery PDF Author: Alejandro Speck-Planche
Publisher: Elsevier
ISBN: 9780081011294
Category : Medical
Languages : en
Pages : 0

Book Description
Drug discovery is an expensive, time-consuming process and the modern drug discovery community is constantly challenged not only with discovering novel bioactive agents to combat resistance from known diseases and fight against new ones, but to do so in a way that is economically effective. Advances in both experimental and theoretical/computational methods envisage that the greatest challenges in drug discovery can be most successfully addressed by using a multi-scale approach, drawing on the specialties of a whole host of different disciplines. Multi-Scale Approaches to Drug Discovery furnishes chemists with the detail they need to identify drug leads with the highest potential before isolating and synthesizing them to produce effective drugs with greater swiftness than classical methods may allow. This significantly speeds up the search for more efficient therapeutic agents. After an introduction to multi-scale approaches outlining the need for and benefits of their use, the book goes on to explore a range of useful techniques and research areas, and their potential applications to this process. Profiling drug binding by thermodynamics, machine learning for predicting enzyme sub-classes, and multitasking models for computer-aided design and virtual compound screening are discussed, before the book goes on to review Alkaloid Menispermaceae leads, natural chemotherapeutic agents and methods for speeding up the design and virtual screening of therapeutic peptides. Flavonoids as multi-target compounds are then explored, before the book concludes with a review of Quasi-SMILES as a novel tool. Collecting together reviews and original research contributions written by leading experts in the field, Multi-Scale Approaches to Drug Discovery highlights cutting-edge approaches and practical examples of their implementation for those involved in the drug discovery process at many different levels. Using the combined knowledge of medicinal, computational, pharmaceutical and bio- chemists, it aims to support growth in the multi-scale approach to promote greater success in the development of new drugs.

Multi-Scale Approaches in Drug Discovery

Multi-Scale Approaches in Drug Discovery PDF Author: Alejandro Speck-Planche
Publisher: Elsevier
ISBN: 008101242X
Category : Science
Languages : en
Pages : 238

Book Description
Drug discovery is an expensive, time-consuming process and the modern drug discovery community is constantly challenged not only with discovering novel bioactive agents to combat resistance from known diseases and fight against new ones, but to do so in a way that is economically effective. Advances in both experimental and theoretical/computational methods envisage that the greatest challenges in drug discovery can be most successfully addressed by using a multi-scale approach, drawing on the specialties of a whole host of different disciplines. Multi-Scale Approaches to Drug Discovery furnishes chemists with the detail they need to identify drug leads with the highest potential before isolating and synthesizing them to produce effective drugs with greater swiftness than classical methods may allow. This significantly speeds up the search for more efficient therapeutic agents. After an introduction to multi-scale approaches outlining the need for and benefits of their use, the book goes on to explore a range of useful techniques and research areas, and their potential applications to this process. Profiling drug binding by thermodynamics, machine learning for predicting enzyme sub-classes, and multitasking models for computer-aided design and virtual compound screening are discussed, before the book goes on to review Alkaloid Menispermaceae leads, natural chemotherapeutic agents and methods for speeding up the design and virtual screening of therapeutic peptides. Flavonoids as multi-target compounds are then explored, before the book concludes with a review of Quasi-SMILES as a novel tool. Collecting together reviews and original research contributions written by leading experts in the field, Multi-Scale Approaches to Drug Discovery highlights cutting-edge approaches and practical examples of their implementation for those involved in the drug discovery process at many different levels. Using the combined knowledge of medicinal, computational, pharmaceutical and bio- chemists, it aims to support growth in the multi-scale approach to promote greater success in the development of new drugs. Offers practical guidance on ways to implement multiscale approaches for increased efficiency in drug discovery Draws on the experience of a highly skilled team of authors under the editorial guidance of one of the field's leading experts Includes cutting-edge techniques at the forefront of medicinal chemistry and drug discovery optimization

Semantic Breakthrough in Drug Discovery

Semantic Breakthrough in Drug Discovery PDF Author: Bin Chen
Publisher: Springer Nature
ISBN: 3031794567
Category : Mathematics
Languages : en
Pages : 10

Book Description
The current drug development paradigm---sometimes expressed as, ``One disease, one target, one drug''---is under question, as relatively few drugs have reached the market in the last two decades. Meanwhile, the research focus of drug discovery is being placed on the study of drug action on biological systems as a whole, rather than on individual components of such systems. The vast amount of biological information about genes and proteins and their modulation by small molecules is pushing drug discovery to its next critical steps, involving the integration of chemical knowledge with these biological databases. Systematic integration of these heterogeneous datasets and the provision of algorithms to mine the integrated datasets would enable investigation of the complex mechanisms of drug action; however, traditional approaches face challenges in the representation and integration of multi-scale datasets, and in the discovery of underlying knowledge in the integrated datasets. The Semantic Web, envisioned to enable machines to understand and respond to complex human requests and to retrieve relevant, yet distributed, data, has the potential to trigger system-level chemical-biological innovations. Chem2Bio2RDF is presented as an example of utilizing Semantic Web technologies to enable intelligent analyses for drug discovery.Table of Contents: Introduction / Data Representation and Integration Using RDF / Data Representation and Integration Using OWL / Finding Complex Biological Relationships in PubMed Articles using Bio-LDA / Integrated Semantic Approach for Systems Chemical Biology Knowledge Discovery / Semantic Link Association Prediction / Conclusions / References / Authors' Biographies

Fragment-based Approaches in Drug Discovery

Fragment-based Approaches in Drug Discovery PDF Author: Wolfgang Jahnke
Publisher: John Wiley & Sons
ISBN: 3527608605
Category : Science
Languages : en
Pages : 391

Book Description
This first systematic summary of the impact of fragment-based approaches on the drug development process provides essential information that was previously unavailable. Adopting a practice-oriented approach, this represents a book by professionals for professionals, tailor-made for drug developers in the pharma and biotech sector who need to keep up-to-date on the latest technologies and strategies in pharmaceutical ligand design. The book is clearly divided into three sections on ligand design, spectroscopic techniques, and screening and drug discovery, backed by numerous case studies.

Multiscale Modeling for Process Safety Applications

Multiscale Modeling for Process Safety Applications PDF Author: Arnab Chakrabarty
Publisher: Butterworth-Heinemann
ISBN: 0123972833
Category : Technology & Engineering
Languages : en
Pages : 446

Book Description
Multiscale Modeling for Process Safety Applications is a new reference demonstrating the implementation of multiscale modeling techniques on process safety applications. It is a valuable resource for readers interested in theoretical simulations and/or computer simulations of hazardous scenarios. As multi-scale modeling is a computational technique for solving problems involving multiple scales, such as how a flammable vapor cloud might behave if ignited, this book provides information on the fundamental topics of toxic, fire, and air explosion modeling, as well as modeling jet and pool fires using computational fluid dynamics. The book goes on to cover nanomaterial toxicity, QPSR analysis on relation of chemical structure to flash point, molecular structure and burning velocity, first principle studies of reactive chemicals, water and air reactive chemicals, and dust explosions. Chemical and process safety professionals, as well as faculty and graduate researchers, will benefit from the detailed coverage provided in this book. Provides the only comprehensive source addressing the use of multiscale modeling in the context of process safety Bridges multiscale modeling with process safety, enabling the reader to understand mapping between problem detail and effective usage of resources Presents an overall picture of addressing safety problems in all levels of modeling and the latest approaches to each in the field Features worked out examples, case studies, and a question bank to aid understanding and involvement for the reader

Drug Discovery and Development

Drug Discovery and Development PDF Author: Ramarao Poduri
Publisher: Springer Nature
ISBN: 9811555346
Category : Medical
Languages : en
Pages : 522

Book Description
This book describes the processes that are involved in the development of new drugs. The authors discuss the history, role of natural products and concept of receptor interactions with regard to the initial stages of drug discovery. In a single, highly readable volume, it outlines the basics of pharmacological screening, drug target identification, and genetics involved in early drug discovery. The final chapters introduce readers to stem therapeutics, pharmacokinetics, pharmacovigilance, and toxicological testing. Given its scope, the book will enable research scholars, professionals and young scientists to understand the key fundamentals of drug discovery, including stereochemistry, pharmacokinetics, clinical trials, statistics and toxicology.

Contemporary Chemical Approaches for Green and Sustainable Drugs

Contemporary Chemical Approaches for Green and Sustainable Drugs PDF Author: Marianna Torok
Publisher: Elsevier
ISBN: 0128232714
Category : Medical
Languages : en
Pages : 568

Book Description
Contemporary Chemical Approaches for Green and Sustainable Drugs provides readers with the knowledge they need to integrate sustainable approaches into their work. Sections cover different aspects of green and sustainable drug development from design to disposal, including computer-aided drug design, green resourcing of drugs and drug candidates, an overview of the health concerns of pharmaceutical pollution, and a survey of potential chemical methods for its reduction. Drawing together the knowledge of a global team of experts, this book provides an inclusive overview of the chemical tools and approaches available for minimizing the negative environmental impact of current and newly developed drugs. This will be a useful guide for all academic and industrial researchers across green and sustainable chemistry, medicinal chemistry, environmental chemistry and pharmaceutical science. Provides an integrative overview of the environmental risks of drugs and drug by products to support chemists in pre-emptively addressing these issues Highlights the advantages of computer-aided drug design, green and sustainable sourcing, and novel methods for the production of safer, more effective drugs Presents individual chapters written by renowned experts with diverse backgrounds Reflects research in practice through selected case studies and extensive state-of-the-art reference sections to serve as a starting point in the design of any specialized environmentally-conscious medicinal chemistry project

Coronavirus Drug Discovery

Coronavirus Drug Discovery PDF Author: Chukwuebuka Egbuna
Publisher: Elsevier
ISBN: 0323851789
Category : Science
Languages : en
Pages : 390

Book Description
Coronavirus Drug Discovery, Volume 1: SARS-CoV-2 (COVID-19) Prevention, Diagnosis, and Treatment is the first of three volumes presenting comprehensive information on drug discovery against COVID-19. This volume provides background information on the genesis of COVID-19, the epidemiology, transmission, pathogenesis, and mutagenesis. It also presents the various treatment options, drug discovery opportunities and vaccine developmental processes. Written by global team of experts from key institutions across the globe, this book is recommended to all concerned agencies, private research firms, and consortiums working on finding a solution to COVID-19 and its variants. By design, this book will be useful to drug developers, medicinal chemists, pharmacologists, health experts, researchers, students and faculty members in industry and academia. Presents information on the genesis of COVID-19, global impact and collaborative efforts Details the epidemiology, transmission, pathogenesis, and mutagenesis of SARS-CoV-2 Documents the various treatment options and vaccine development for COVID-19

Improving and Accelerating Therapeutic Development for Nervous System Disorders

Improving and Accelerating Therapeutic Development for Nervous System Disorders PDF Author: Institute of Medicine
Publisher: National Academies Press
ISBN: 0309292492
Category : Medical
Languages : en
Pages : 107

Book Description
Improving and Accelerating Therapeutic Development for Nervous System Disorders is the summary of a workshop convened by the IOM Forum on Neuroscience and Nervous System Disorders to examine opportunities to accelerate early phases of drug development for nervous system drug discovery. Workshop participants discussed challenges in neuroscience research for enabling faster entry of potential treatments into first-in-human trials, explored how new and emerging tools and technologies may improve the efficiency of research, and considered mechanisms to facilitate a more effective and efficient development pipeline. There are several challenges to the current drug development pipeline for nervous system disorders. The fundamental etiology and pathophysiology of many nervous system disorders are unknown and the brain is inaccessible to study, making it difficult to develop accurate models. Patient heterogeneity is high, disease pathology can occur years to decades before becoming clinically apparent, and diagnostic and treatment biomarkers are lacking. In addition, the lack of validated targets, limitations related to the predictive validity of animal models - the extent to which the model predicts clinical efficacy - and regulatory barriers can also impede translation and drug development for nervous system disorders. Improving and Accelerating Therapeutic Development for Nervous System Disorders identifies avenues for moving directly from cellular models to human trials, minimizing the need for animal models to test efficacy, and discusses the potential benefits and risks of such an approach. This report is a timely discussion of opportunities to improve early drug development with a focus toward preclinical trials.

Machine Learning in Chemistry

Machine Learning in Chemistry PDF Author: Hugh M. Cartwright
Publisher: Royal Society of Chemistry
ISBN: 1788017897
Category : Science
Languages : en
Pages : 564

Book Description
Progress in the application of machine learning (ML) to the physical and life sciences has been rapid. A decade ago, the method was mainly of interest to those in computer science departments, but more recently ML tools have been developed that show significant potential across wide areas of science. There is a growing consensus that ML software, and related areas of artificial intelligence, may, in due course, become as fundamental to scientific research as computers themselves. Yet a perception remains that ML is obscure or esoteric, that only computer scientists can really understand it, and that few meaningful applications in scientific research exist. This book challenges that view. With contributions from leading research groups, it presents in-depth examples to illustrate how ML can be applied to real chemical problems. Through these examples, the reader can both gain a feel for what ML can and cannot (so far) achieve, and also identify characteristics that might make a problem in physical science amenable to a ML approach. This text is a valuable resource for scientists who are intrigued by the power of machine learning and want to learn more about how it can be applied in their own field.