Multi-scale and Multi-phase Deformation of Crystalline Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi-scale and Multi-phase Deformation of Crystalline Materials PDF full book. Access full book title Multi-scale and Multi-phase Deformation of Crystalline Materials by . Download full books in PDF and EPUB format.

Multi-scale and Multi-phase Deformation of Crystalline Materials

Multi-scale and Multi-phase Deformation of Crystalline Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The MDEF package contains capabilities ofr modeling the deformation of materials at the crystal scale. Primary code capabilities are: xoth "strength" and "equation of state" aspects of material response, post-processing utilities, utilities for comparing results with data from diffraction experiments.

Multi-scale and Multi-phase Deformation of Crystalline Materials

Multi-scale and Multi-phase Deformation of Crystalline Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The MDEF package contains capabilities ofr modeling the deformation of materials at the crystal scale. Primary code capabilities are: xoth "strength" and "equation of state" aspects of material response, post-processing utilities, utilities for comparing results with data from diffraction experiments.

Special Issue: Multi-scale Plasticity of Crystalline Materials

Special Issue: Multi-scale Plasticity of Crystalline Materials PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 416

Book Description


Crystal Plasticity Finite Element Methods

Crystal Plasticity Finite Element Methods PDF Author: Franz Roters
Publisher: John Wiley & Sons
ISBN: 3527642099
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
Written by the leading experts in computational materials science, this handy reference concisely reviews the most important aspects of plasticity modeling: constitutive laws, phase transformations, texture methods, continuum approaches and damage mechanisms. As a result, it provides the knowledge needed to avoid failures in critical systems udner mechanical load. With its various application examples to micro- and macrostructure mechanics, this is an invaluable resource for mechanical engineers as well as for researchers wanting to improve on this method and extend its outreach.

Plasticity and Beyond

Plasticity and Beyond PDF Author: Jörg Schröder
Publisher: Springer Science & Business Media
ISBN: 3709116252
Category : Science
Languages : en
Pages : 417

Book Description
The book presents the latest findings in experimental plasticity, crystal plasticity, phase transitions, advanced mathematical modeling of finite plasticity and multi-scale modeling. The associated algorithmic treatment is mainly based on finite element formulations for standard (local approach) as well as for non-standard (non-local approach) continua and for pure macroscopic as well as for directly coupled two-scale boundary value problems. Applications in the area of material design/processing are covered, ranging from grain boundary effects in polycrystals and phase transitions to deep-drawing of multiphase steels by directly taking into account random microstructures.

Multiscale Materials Modeling

Multiscale Materials Modeling PDF Author: Siegfried Schmauder
Publisher: Walter de Gruyter GmbH & Co KG
ISBN: 3110412454
Category : Science
Languages : en
Pages : 346

Book Description
This book presents current spatial and temporal multiscaling approaches of materials modeling. Recent results demonstrate the deduction of macroscopic properties at the device and component level by simulating structures and materials sequentially on atomic, micro- and mesostructural scales. The book covers precipitation strengthening and fracture processes in metallic alloys, materials that exhibit ferroelectric and magnetoelectric properties as well as biological, metal-ceramic and polymer composites. The progress which has been achieved documents the current state of art in multiscale materials modelling (MMM) on the route to full multi-scaling. Contents: Part I: Multi-time-scale and multi-length-scale simulations of precipitation and strengthening effects Linking nanoscale and macroscale Multiscale simulations on the coarsening of Cu-rich precipitates in α-Fe using kinetic Monte Carlo, Molecular Dynamics, and Phase-Field simulations Multiscale modeling predictions of age hardening curves in Al-Cu alloys Kinetic Monte Carlo modeling of shear-coupled motion of grain boundaries Product Properties of a two-phase magneto-electric composite Part II: Multiscale simulations of plastic deformation and fracture Niobium/alumina bicrystal interface fracture Atomistically informed crystal plasticity model for body-centred cubic iron FE2AT ・ finite element informed atomistic simulations Multiscale fatigue crack growth modeling for welded stiffened panels Molecular dynamics study on low temperature brittleness in tungsten single crystals Multi scale cellular automata and finite element based model for cold deformation and annealing of a ferritic-pearlitic microstructure Multiscale simulation of the mechanical behavior of nanoparticle-modified polyamide composites Part III: Multiscale simulations of biological and bio-inspired materials, bio-sensors and composites Multiscale Modeling of Nano-Biosensors Finite strain compressive behaviour of CNT/epoxy nanocomposites Peptide・zinc oxide interaction

A Framework for Multiscale Modeling of Deformation in Crystalline Solids

A Framework for Multiscale Modeling of Deformation in Crystalline Solids PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 11

Book Description
A simulation framework was developed for studying the deformation behavior of metallic materials. Atomistic simulations were employed to study dislocation nucleation during nanoindentation and to correlate dislocation behavior and overall material response in thin-film crystals. An instrumented indenter was acquired to study the indentation behavior of metallic composites. Experimental and continuum- based modeling works on indentation of discontinuously reinforced metal matrix composites were also conducted. Detailed microscopic features were analyzed, which aided in our fundamental understanding of plastic deformation in these materials.

Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems

Innovative Numerical Approaches for Multi-Field and Multi-Scale Problems PDF Author: Kerstin Weinberg
Publisher: Springer
ISBN: 3319390228
Category : Science
Languages : en
Pages : 310

Book Description
This book provides readers with a detailed insight into diverse and exciting recent developments in computational solid mechanics, documenting new perspectives and horizons. The topics addressed cover a wide range of current research, from computational materials modeling, including crystal plasticity, micro-structured materials, and biomaterials, to multi-scale simulations of multi-physics phenomena. Particular emphasis is placed on pioneering discretization methods for the solution of coupled non-linear problems at different length scales. The book, written by leading experts, reflects the remarkable advances that have been made in the field over the past decade and more, largely due to the development of a sound mathematical background and efficient computational strategies. The contents build upon the 2014 IUTAM symposium celebrating the 60th birthday of Professor Michael Ortiz, to whom this book is dedicated. His work has long been recognized as pioneering and is a continuing source of inspiration for many researchers. It is hoped that by providing a "taste" of the field of computational mechanics, the book will promote its popularity among the mechanics and physics communities.

Mesoscale Models

Mesoscale Models PDF Author: Sinisa Mesarovic
Publisher: Springer
ISBN: 3319941860
Category : Science
Languages : en
Pages : 348

Book Description
The book helps to answer the following questions: How far have the understanding and mesoscale modeling advanced in recent decades, what are the key open questions that require further research and what are the mathematical and physical requirements for a mesoscale model intended to provide either insight or a predictive engineering tool? It is addressed to young researchers including doctoral students, postdocs and early career faculty,

Deformation-Based Processing of Materials

Deformation-Based Processing of Materials PDF Author: Heng Li
Publisher: Elsevier
ISBN: 0128143827
Category : Technology & Engineering
Languages : en
Pages : 350

Book Description
Deformation Based Processing of Materials: Behavior, Performance, Modeling and Control focuses on deformation based process behaviors and process performance in terms of the quality of the needed shape, geometries, and the requested properties of the deformed products. In addition, modelling and simulation is covered to create an in-depth and epistemological understanding of the process. Other topics discussed include ways to efficiently reduce or avoid defects and effectively improve the quality of deformed parts. The book is ideal as a technical document, but also serves as scientific literature for engineers, scientists, academics, research students and management professionals involved in deformation based materials processing. Covers process behaviors, such as non-uniform deformation, unstable deformation, material flow phenomena, and process performance Includes modelling and simulation of the entire deformation process Looks at control of the preferred deformation, undesirable material flow, avoidance and reduction of defects, and improving the dimensional accuracy, surface quality and microstructure construction of the produced products

Multiscale Modelling and Simulation

Multiscale Modelling and Simulation PDF Author: Sabine Attinger
Publisher: Springer Science & Business Media
ISBN: 9783540211808
Category : Mathematics
Languages : en
Pages : 304

Book Description
In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.