Author: Jinna Li
Publisher: Springer Nature
ISBN: 3031283945
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
This book offers a thorough introduction to the basics and scientific and technological innovations involved in the modern study of reinforcement-learning-based feedback control. The authors address a wide variety of systems including work on nonlinear, networked, multi-agent and multi-player systems. A concise description of classical reinforcement learning (RL), the basics of optimal control with dynamic programming and network control architectures, and a brief introduction to typical algorithms build the foundation for the remainder of the book. Extensive research on data-driven robust control for nonlinear systems with unknown dynamics and multi-player systems follows. Data-driven optimal control of networked single- and multi-player systems leads readers into the development of novel RL algorithms with increased learning efficiency. The book concludes with a treatment of how these RL algorithms can achieve optimal synchronization policies for multi-agent systems with unknown model parameters and how game RL can solve problems of optimal operation in various process industries. Illustrative numerical examples and complex process control applications emphasize the realistic usefulness of the algorithms discussed. The combination of practical algorithms, theoretical analysis and comprehensive examples presented in Reinforcement Learning will interest researchers and practitioners studying or using optimal and adaptive control, machine learning, artificial intelligence, and operations research, whether advancing the theory or applying it in mineral-process, chemical-process, power-supply or other industries.
Reinforcement Learning
Author: Jinna Li
Publisher: Springer Nature
ISBN: 3031283945
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
This book offers a thorough introduction to the basics and scientific and technological innovations involved in the modern study of reinforcement-learning-based feedback control. The authors address a wide variety of systems including work on nonlinear, networked, multi-agent and multi-player systems. A concise description of classical reinforcement learning (RL), the basics of optimal control with dynamic programming and network control architectures, and a brief introduction to typical algorithms build the foundation for the remainder of the book. Extensive research on data-driven robust control for nonlinear systems with unknown dynamics and multi-player systems follows. Data-driven optimal control of networked single- and multi-player systems leads readers into the development of novel RL algorithms with increased learning efficiency. The book concludes with a treatment of how these RL algorithms can achieve optimal synchronization policies for multi-agent systems with unknown model parameters and how game RL can solve problems of optimal operation in various process industries. Illustrative numerical examples and complex process control applications emphasize the realistic usefulness of the algorithms discussed. The combination of practical algorithms, theoretical analysis and comprehensive examples presented in Reinforcement Learning will interest researchers and practitioners studying or using optimal and adaptive control, machine learning, artificial intelligence, and operations research, whether advancing the theory or applying it in mineral-process, chemical-process, power-supply or other industries.
Publisher: Springer Nature
ISBN: 3031283945
Category : Technology & Engineering
Languages : en
Pages : 318
Book Description
This book offers a thorough introduction to the basics and scientific and technological innovations involved in the modern study of reinforcement-learning-based feedback control. The authors address a wide variety of systems including work on nonlinear, networked, multi-agent and multi-player systems. A concise description of classical reinforcement learning (RL), the basics of optimal control with dynamic programming and network control architectures, and a brief introduction to typical algorithms build the foundation for the remainder of the book. Extensive research on data-driven robust control for nonlinear systems with unknown dynamics and multi-player systems follows. Data-driven optimal control of networked single- and multi-player systems leads readers into the development of novel RL algorithms with increased learning efficiency. The book concludes with a treatment of how these RL algorithms can achieve optimal synchronization policies for multi-agent systems with unknown model parameters and how game RL can solve problems of optimal operation in various process industries. Illustrative numerical examples and complex process control applications emphasize the realistic usefulness of the algorithms discussed. The combination of practical algorithms, theoretical analysis and comprehensive examples presented in Reinforcement Learning will interest researchers and practitioners studying or using optimal and adaptive control, machine learning, artificial intelligence, and operations research, whether advancing the theory or applying it in mineral-process, chemical-process, power-supply or other industries.
Handbook of Reinforcement Learning and Control
Author: Kyriakos G. Vamvoudakis
Publisher: Springer Nature
ISBN: 3030609901
Category : Technology & Engineering
Languages : en
Pages : 833
Book Description
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
Publisher: Springer Nature
ISBN: 3030609901
Category : Technology & Engineering
Languages : en
Pages : 833
Book Description
This handbook presents state-of-the-art research in reinforcement learning, focusing on its applications in the control and game theory of dynamic systems and future directions for related research and technology. The contributions gathered in this book deal with challenges faced when using learning and adaptation methods to solve academic and industrial problems, such as optimization in dynamic environments with single and multiple agents, convergence and performance analysis, and online implementation. They explore means by which these difficulties can be solved, and cover a wide range of related topics including: deep learning; artificial intelligence; applications of game theory; mixed modality learning; and multi-agent reinforcement learning. Practicing engineers and scholars in the field of machine learning, game theory, and autonomous control will find the Handbook of Reinforcement Learning and Control to be thought-provoking, instructive and informative.
Integral and Inverse Reinforcement Learning for Optimal Control Systems and Games
Author: Bosen Lian
Publisher: Springer Nature
ISBN: 3031452526
Category :
Languages : en
Pages : 278
Book Description
Publisher: Springer Nature
ISBN: 3031452526
Category :
Languages : en
Pages : 278
Book Description
H∞-Optimal Control and Related Minimax Design Problems
Author: Tamer Başar
Publisher: Springer Science & Business Media
ISBN: 0817647570
Category : Science
Languages : en
Pages : 417
Book Description
This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.
Publisher: Springer Science & Business Media
ISBN: 0817647570
Category : Science
Languages : en
Pages : 417
Book Description
This book is devoted to one of the fastest developing fields in modern control theory - the so-called H-infinity optimal control theory. The book can be used for a second or third year graduate level course in the subject, and researchers working in the area will find the book useful as a standard reference. Based mostly on recent work of the authors, the book is written on a good mathematical level. Many results in it are original, interesting, and inspirational. The topic is central to modern control and hence this definitive book is highly recommended to anyone who wishes to catch up with important theoretical developments in applied mathematics and control.
Optimal Adaptive Control and Differential Games by Reinforcement Learning Principles
Author: Draguna L. Vrabie
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305
Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Publisher: IET
ISBN: 1849194890
Category : Computers
Languages : en
Pages : 305
Book Description
The book reviews developments in the following fields: optimal adaptive control; online differential games; reinforcement learning principles; and dynamic feedback control systems.
Adaptive Dynamic Programming: Single and Multiple Controllers
Author: Ruizhuo Song
Publisher: Springer
ISBN: 9811317127
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
Publisher: Springer
ISBN: 9811317127
Category : Technology & Engineering
Languages : en
Pages : 278
Book Description
This book presents a class of novel optimal control methods and games schemes based on adaptive dynamic programming techniques. For systems with one control input, the ADP-based optimal control is designed for different objectives, while for systems with multi-players, the optimal control inputs are proposed based on games. In order to verify the effectiveness of the proposed methods, the book analyzes the properties of the adaptive dynamic programming methods, including convergence of the iterative value functions and the stability of the system under the iterative control laws. Further, to substantiate the mathematical analysis, it presents various application examples, which provide reference to real-world practices.
Neural Networks for Control
Author: W. Thomas Miller
Publisher: MIT Press
ISBN: 9780262631617
Category : Computers
Languages : en
Pages : 548
Book Description
Neural Networks for Control brings together examples of all the most important paradigms for the application of neural networks to robotics and control. Primarily concerned with engineering problems and approaches to their solution through neurocomputing systems, the book is divided into three sections: general principles, motion control, and applications domains (with evaluations of the possible applications by experts in the applications areas.) Special emphasis is placed on designs based on optimization or reinforcement, which will become increasingly important as researchers address more complex engineering challenges or real biological-control problems.A Bradford Book. Neural Network Modeling and Connectionism series
Publisher: MIT Press
ISBN: 9780262631617
Category : Computers
Languages : en
Pages : 548
Book Description
Neural Networks for Control brings together examples of all the most important paradigms for the application of neural networks to robotics and control. Primarily concerned with engineering problems and approaches to their solution through neurocomputing systems, the book is divided into three sections: general principles, motion control, and applications domains (with evaluations of the possible applications by experts in the applications areas.) Special emphasis is placed on designs based on optimization or reinforcement, which will become increasingly important as researchers address more complex engineering challenges or real biological-control problems.A Bradford Book. Neural Network Modeling and Connectionism series
Decentralised Reinforcement Learning in Markov Games
Author: Peter Vrancx
Publisher: ASP / VUBPRESS / UPA
ISBN: 9054877154
Category : Computers
Languages : en
Pages : 218
Book Description
Introducing a new approach to multiagent reinforcement learning and distributed artificial intelligence, this guide shows how classical game theory can be used to compose basic learning units. This approach to creating agents has the advantage of leading to powerful, yet intuitively simple, algorithms that can be analyzed. The setup is demonstrated here in a number of different settings, with a detailed analysis of agent learning behaviors provided for each. A review of required background materials from game theory and reinforcement learning is also provided, along with an overview of related multiagent learning methods.
Publisher: ASP / VUBPRESS / UPA
ISBN: 9054877154
Category : Computers
Languages : en
Pages : 218
Book Description
Introducing a new approach to multiagent reinforcement learning and distributed artificial intelligence, this guide shows how classical game theory can be used to compose basic learning units. This approach to creating agents has the advantage of leading to powerful, yet intuitively simple, algorithms that can be analyzed. The setup is demonstrated here in a number of different settings, with a detailed analysis of agent learning behaviors provided for each. A review of required background materials from game theory and reinforcement learning is also provided, along with an overview of related multiagent learning methods.
LQ Dynamic Optimization and Differential Games
Author: Jacob Engwerda
Publisher: John Wiley & Sons
ISBN: 9780470015247
Category : Business & Economics
Languages : en
Pages : 514
Book Description
Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
Publisher: John Wiley & Sons
ISBN: 9780470015247
Category : Business & Economics
Languages : en
Pages : 514
Book Description
Game theory is the theory of social situations, and the majority of research into the topic focuses on how groups of people interact by developing formulas and algorithms to identify optimal strategies and to predict the outcome of interactions. Only fifty years old, it has already revolutionized economics and finance, and is spreading rapidly to a wide variety of fields. LQ Dynamic Optimization and Differential Games is an assessment of the state of the art in its field and the first modern book on linear-quadratic game theory, one of the most commonly used tools for modelling and analysing strategic decision making problems in economics and management. Linear quadratic dynamic models have a long tradition in economics, operations research and control engineering; and the author begins by describing the one-decision maker LQ dynamic optimization problem before introducing LQ differential games. Covers cooperative and non-cooperative scenarios, and treats the standard information structures (open-loop and feedback). Includes real-life economic examples to illustrate theoretical concepts and results. Presents problem formulations and sound mathematical problem analysis. Includes exercises and solutions, enabling use for self-study or as a course text. Supported by a website featuring solutions to exercises, further examples and computer code for numerical examples. LQ Dynamic Optimization and Differential Games offers a comprehensive introduction to the theory and practice of this extensively used class of economic models, and will appeal to applied mathematicians and econometricians as well as researchers and senior undergraduate/graduate students in economics, mathematics, engineering and management science.
Reinforcement Learning for Optimal Feedback Control
Author: Rushikesh Kamalapurkar
Publisher: Springer
ISBN: 331978384X
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.
Publisher: Springer
ISBN: 331978384X
Category : Technology & Engineering
Languages : en
Pages : 305
Book Description
Reinforcement Learning for Optimal Feedback Control develops model-based and data-driven reinforcement learning methods for solving optimal control problems in nonlinear deterministic dynamical systems. In order to achieve learning under uncertainty, data-driven methods for identifying system models in real-time are also developed. The book illustrates the advantages gained from the use of a model and the use of previous experience in the form of recorded data through simulations and experiments. The book’s focus on deterministic systems allows for an in-depth Lyapunov-based analysis of the performance of the methods described during the learning phase and during execution. To yield an approximate optimal controller, the authors focus on theories and methods that fall under the umbrella of actor–critic methods for machine learning. They concentrate on establishing stability during the learning phase and the execution phase, and adaptive model-based and data-driven reinforcement learning, to assist readers in the learning process, which typically relies on instantaneous input-output measurements. This monograph provides academic researchers with backgrounds in diverse disciplines from aerospace engineering to computer science, who are interested in optimal reinforcement learning functional analysis and functional approximation theory, with a good introduction to the use of model-based methods. The thorough treatment of an advanced treatment to control will also interest practitioners working in the chemical-process and power-supply industry.