Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection PDF full book. Access full book title Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection by Thanyawalai Sujidkul. Download full books in PDF and EPUB format.

Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection

Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection PDF Author: Thanyawalai Sujidkul
Publisher:
ISBN:
Category : Carbon fiber-reinforced plastics
Languages : en
Pages : 155

Book Description
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As well-know, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to predict the mechanical damage behavior with electrical properties and thermal properties.

Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection

Multi-physics Modeling of Multifunctional Composite Materials for Damage Detection PDF Author: Thanyawalai Sujidkul
Publisher:
ISBN:
Category : Carbon fiber-reinforced plastics
Languages : en
Pages : 155

Book Description
This study presents a modeling of multifunction composite materials for damage detection with its verification and validation to mechanical behavior predictions of Carbon Fibre Reinforced Polymer composites (CFRPs), CFRPs laminated composites, and woven SiC/SiC matrix composites that are subjected to fracture damage. Advantages of those materials are low cost, low density, high strength-to-weight ratio, and comparable specific tensile properties, the special of SiC/SiC is good environmental stability at high temperature. Resulting in, the composite has been used for many important structures such as helicopter rotors, aerojet engines, gas turbines, hot control surfaces, sporting goods, and windmill blades. Damage or material defect detection in a mechanical component can provide vital information for the prediction of remaining useful life, which will result in the prevention of catastrophic failures. Thus the understanding of the mechanical behavior have been challenge to the prevent damage and failure of composites in different scales. The damage detection methods in composites have been investigated widely in recent years. Non-destructive techniques are the traditional methods to detect the damage such as X-ray, acoustic emission and thermography. However, due to the invisible damage in composite can be occurred, to prevent the failure in composites. The developments of damage detection methods have been considered. Due to carbon fibers are conductive materials, in resulting CFRPs can be self-sensing to detect damage. As well-know, the electrical resistance has been shown to be a sensitive measure of internal damage, and also this work study in thermal resistance can detect damage in composites. However, there is a few number of different micromechanical modeling schemes has been proposed in the published literature for various types of composites. This works will provide with a numerical, analytical, and theoretical failure models in different damages to predict the mechanical damage behavior with electrical properties and thermal properties.

Modeling Damage, Fatigue and Failure of Composite Materials

Modeling Damage, Fatigue and Failure of Composite Materials PDF Author: Ramesh Talreja
Publisher: Elsevier
ISBN: 0443184887
Category : Technology & Engineering
Languages : en
Pages : 620

Book Description
Modeling Damage, Fatigue and Failure of Composite Materials, Second Edition provides the latest research in the field of composite materials, an area that has attracted a wealth of research, with significant interest in the areas of damage, fatigue, and failure. The book is fully updated, and is a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials. It focuses on materials modeling while also reviewing treatments for analyzing failure in composite structures. Sections review damage development in composite materials such as generic damage and damage accumulation in textile composites and under multiaxial loading. Part Two focuses on the modeling of failure mechanisms in composite materials, with attention given to fiber/matrix cracking and debonding, compression failure, and delamination fracture. Final sections examine the modeling of damage and materials response in composite materials, including micro-level and multi-scale approaches, the failure analysis of composite materials and joints, and the applications of predictive failure models. Provides a comprehensive source of physics-based models for the analysis of progressive and critical failure phenomena in composite materials Assesses failure and life prediction in composite materials Discusses the applications of predictive failure models such as computational approaches to failure analysis Covers further developments in computational analyses and experimental techniques, along with new applications in aerospace, automotive, and energy (wind turbine blades) fields Covers delamination and thermoplastic-based composites

Multi-physics Computational Grains (mpcgs)

Multi-physics Computational Grains (mpcgs) PDF Author: Peter L. Bishay
Publisher:
ISBN: 9781303742798
Category :
Languages : en
Pages : 221

Book Description
This study presents a new family of highly accurate and efficient computational methods for modeling the multi-physics of multifunctional materials and composites in the micro-scale named "Multi-Physics Computational Grains" (MPCGs). Each "mathematical grain" has a random polygonal/polyhedral geometrical shape that resembles the natural shapes of the material grains in the micro-scale where each grain is surrounded by an arbitrary number of neighboring grains. The physics that are incorporated in this study include: Linear Elasticity, Electrostatics, Magnetostatics, Piezoelectricity, Piezomagnetism and Ferroelectricity. However, the methods proposed here can be extended to include more physics (thermo-elasticity, pyroelectricity, electric conduction, heat conduction, etc.) in their formulation, different analysis types (dynamics, fracture, fatigue, etc.), nonlinearities, different defect shapes, and some of the 2D methods can also be extended to 3D formulation. We present "Multi-Region Trefftz Collocation Grains" (MTCGs) as a simple and efficient method for direct and inverse problems, "Trefftz-Lekhnitskii Computational Gains" (TLCGs) for modeling porous and composite smart materials, "Hybrid Displacement Computational Grains" (HDCGs) as a general method for modeling multifunctional materials and composites, and finally "Radial-Basis-Functions Computational Grains" (RBFCGs) for modeling functionally-graded materials, magneto-electro-elastic (MEE) materials and the switching phenomena in ferroelectric materials. The first three proposed methods are suitable for direct numerical simulation (DNS) of the micromechanics of smart composite/porous materials with non-symmetrical arrangement of voids/inclusions, and provide minimal effort in meshing and minimal time in computations, since each grain can represent the matrix of a composite and can include a pore or an inclusion. The last three methods provide stiffness matrix in their formulation and hence can be readily implemented in a finite element routine. Several numerical examples are provided to show the ability and accuracy of the proposed methods to determine the effective material properties of different types of piezo-composites, and detect the damage-prone sites in a microstructure under certain loading types. The last method (RBFCGs) is also suitable for modeling the switching phenomena in ferro-materials (ferroelectric, ferromagnetic, etc.) after incorporating a certain nonlinear constitutive model and a switching criterion. Since the interaction between grains during loading cycles has a profound influence on the switching phenomena, it is important to simulate the grains with geometrical shapes that are similar to the real shapes of grains as seen in lab experiments. Hence the use of the 3D RBFCGs, which allow for the presence of all the six variants of the constitutive relations, together with the randomly generated crystallographic axes in each grain, as done in the present study, is considered to be the most realistic model that can be used for the direct mesoscale numerical simulation (DMNS) of polycrystalline ferro-materials.

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites

Multi-Scale Continuum Mechanics Modelling of Fibre-Reinforced Polymer Composites PDF Author: Wim Van Paepegem
Publisher: Woodhead Publishing
ISBN: 0128189843
Category : Technology & Engineering
Languages : en
Pages : 764

Book Description
Multi-scale modelling of composites is a very relevant topic in composites science. This is illustrated by the numerous sessions in the recent European and International Conferences on Composite Materials, but also by the fast developments in multi-scale modelling software tools, developed by large industrial players such as Siemens (Virtual Material Characterization toolkit and MultiMechanics virtual testing software), MSC/e-Xstream (Digimat software), Simulia (micromechanics plug-in in Abaqus), HyperSizer (Multi-scale design of composites), Altair (Altair Multiscale Designer) This book is intended to be an ideal reference on the latest advances in multi-scale modelling of fibre-reinforced polymer composites, that is accessible for both (young) researchers and end users of modelling software. We target three main groups: This book aims at a complete introduction and overview of the state-of-the-art in multi-scale modelling of composites in three axes: . ranging from prediction of homogenized elastic properties to nonlinear material behaviour . ranging from geometrical models for random packing of unidirectional fibres over meso-scale geometries for textile composites to orientation tensors for short fibre composites . ranging from damage modelling of unidirectionally reinforced composites over textile composites to short fibre-reinforced composites The book covers the three most important scales in multi-scale modelling of composites: (i) micro-scale, (ii) meso-scale and (iii) macro-scale. The nano-scale and related atomistic and molecular modelling approaches are deliberately excluded, since the book wants to focus on continuum mechanics and there are already a lot of dedicated books about polymer nanocomposites. A strong focus is put on physics-based damage modelling, in the sense that the chapters devote attention to modelling the different damage mechanisms (matrix cracking, fibre/matrix debonding, delamination, fibre fracture,.) in such a way that the underlying physics of the initiation and growth of these damage modes is respected. The book also gives room to not only discuss the finite element based approaches for multi-scale modelling, but also much faster methods that are popular in industrial software, such as Mean Field Homogenization methods (based on Mori-Tanaka and Eshelby solutions) and variational methods (shear lag theory and more advanced theories). Since the book targets a wide audience, the focus is put on the most common numerical approaches that are used in multi-scale modelling. Very specialized numerical methods like peridynamics modelling, Material Point Method, eXtended Finite Element Method (XFEM), isogeometric analysis, SPH (Smoothed Particle Hydrodynamics),. are excluded. Outline of the book The book is divided in three large parts, well balanced with each a similar number of chapters: Part I deals with all "ingredients" to start with multi-scale modelling, limited to elastic property prediction. This typically includes: (i) setting up your geometrical model at micro- or meso-scale (definition of Representative Volume Element (RVE) or Repeating Unit Cell (RUC)), (ii) definition of periodic boundary conditions, (iii) homogenization of the elastic properties, starting from the elastic properties of the constituents, (iv) importance of statistical representation of geometry and stochastic nature of fibre architecture. This should bring all readers at the same level of principles and terminology for multi-scale modelling. Advanced users could eventually skip this first part. Part II deals with nonlinear multi-scale modelling. We build further upon the ingredients from Part I, but now add all kinds of nonlinearities to the simulation at micro- or meso-scale (matrix cracking, delamination, fibre/matrix debonding, delamination, fibre failure, visco-elasto-plasticity-damage of the polymer matrix,.). Not only finite element based techniques are covered, but also much faster inclusion methods (Mori-Tanaka, Eshelby,.) and variational methods. Part III deals with the laminate scale or macro-scale, where all these multi-scale modelling tools are applied for macro-scale ply-based modelling and virtual testing of laminates (in static loading, but also sometimes for prediction of fatigue, post-impact strength,.). In all three parts, the main three types of fibre reinforcement are covered (unidirectionally reinforced composites, textile composites and short fibre composites). The chapters are written by leading authorities from academia, and each chapter gives a self-contained overview of a specific topic, covering the state-of-the-art and future research challenges. . all software users, R&D people and researchers that have some knowledge in general continuum mechanics modelling of composites, but have never worked in the field of multi-scale modelling, . this book should also provide a strong theoretical background to the end users of commercial multi-scale modelling tools, and warn them for the pitfalls and difficulties in obtaining results with such software, . for advanced users and researchers in multi-scale modelling, the book will still be of much value, because almost nobody will cover in his/her own research the complete field of knowledge that is described in this book.

Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3

Mechanics of Composite, Hybrid and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3 PDF Author: Vijay Chalivendra
Publisher: Springer Nature
ISBN: 3030867412
Category : Technology & Engineering
Languages : en
Pages : 116

Book Description
Mechanics of Composite, Hybrid, and Multifunctional Materials, Fracture, Fatigue, Failure and Damage Evolution, Volume 3 of the Proceedings of the 2021 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the third volume of four from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Recycled Constituent Composites Damage Detection Advanced Imaging of Composites Multifunctional Materials Composite Interfaces Tunable Composites Novel Experimental Methods Extreme Environments Interfacial Fracture Integration of Models & Experiments Mechanics of Energy & Energetic Materials Integration of Models & Experiments In Situ Techniques for Fatigue & Fracture Microscale & Microstructural Effects on Mechanical Behavior

Multi-Scale Damage Modeling for Advanced Composite Materials

Multi-Scale Damage Modeling for Advanced Composite Materials PDF Author: Bazle Z. Haque
Publisher: Wiley
ISBN: 9781118710067
Category : Technology & Engineering
Languages : en
Pages : 220

Book Description
This book covers multi-scale damage modeling of composite materials while expanding classical techniques to consider advanced fiber architectures such as woven textile composites. Classical methods are expanded to the analysis of thick-section composites which opens the regime to ballistic and low velocity impact applications. These analyses are inherently multi-scale in nature, as deformation and failure mechanisms involve multiple phenomena on several length scales. Nano and micro scale modeling utilizing molecular and dynamic (MD) and advanced fracture computational techniques (XFEM and cohesive element approaches) can be employed to determine the property enhancements and toughening effects of nanoparticulate and carbon nanotube reinforcements. Material-by-design approaches to composite material development will be achieved through modeling of representative microstructures at multiple length scales.

Modeling the Effect of Damage in Composite Structures

Modeling the Effect of Damage in Composite Structures PDF Author: Christos Kassapoglou
Publisher: John Wiley & Sons
ISBN: 1119013240
Category : Technology & Engineering
Languages : en
Pages : 252

Book Description
Comprehensively covers new and existing methods for the design and analysis of composites structures with damage present Provides efficient and accurate approaches for analysing structures with holes and impact damage Introduces a new methodology for fatigue analysis of composites Provides design guidelines, and step by step descriptions of how to apply the methods, along with evaluation of their accuracy and applicability Includes problems and exercises Accompanied by a website hosting lecture slides and solutions

American Society of Composites-28th Technical Conference

American Society of Composites-28th Technical Conference PDF Author: Charles Bakis
Publisher: DEStech Publications, Inc
ISBN: 1605951072
Category : Technology & Engineering
Languages : en
Pages : 1892

Book Description
New and unpublished U.S. and international research on multifunctional, active, biobased, SHM, self-healing composites -- from nanolevel to large structures New information on modeling, design, computational engineering, manufacturing, testing Applications to aircraft, bridges, concrete, medicine, body armor, wind energy This fully searchable CD-ROM contains 135 original research papers on all phases of composite materials. The document provides cutting edge research by US, Canadian, and Japanese authorities on matrix-based and fiber composites from design to damage analysis and detection. Major divisions of the work include: Structural Health Monitoring, Multifunctional Composites, Integrated Computational Materials Engineering, Interlaminar Testing, Analysis-Shell Structures, Thermoplastic Matrices, Analysis Non-classical Laminates, Bio-Based Composites, Electrical Properties, Dynamic Behavior, Damage/Failure, Compression-Testing, Active Composites, 3D Reinforcement, Dielectric Nanocomposites, Micromechanical Analysis, Processing, CM Reinforcement for Concrete, Environmental Effects, Phase-Transforming, Molecular Modeling, Impact.

Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5

Mechanics of Composite, Hybrid and Multifunctional Materials, Volume 5 PDF Author: Piyush R. Thakre
Publisher: Springer
ISBN: 3319955101
Category : Science
Languages : en
Pages : 324

Book Description
Mechanics of Composite, Hybrid, and Multifunctional Materials, Volume 5 of the Proceedings of the 2018 SEM Annual Conference & Exposition on Experimental and Applied Mechanics, the fifth volume of eight from the Conference, brings together contributions to this important area of research and engineering. The collection presents early findings and case studies on a wide range of areas, including: Recycled Constituent Composites Nanocomposites Mechanics of Composites Fracture & Fatigue of Composites Multifunctional Materials Damage Detection & Non-destructive Evaluation Composites for Wind Energy & Aerospace Applications Computed Tomography of Composites Manufacturing & Joining of Composites Novel Developments in Composites

Multiscale Modeling and Simulation of Composite Materials and Structures

Multiscale Modeling and Simulation of Composite Materials and Structures PDF Author: Young Kwon
Publisher: Springer Science & Business Media
ISBN: 0387363181
Category : Technology & Engineering
Languages : en
Pages : 634

Book Description
This book presents the state-of-the-art in multiscale modeling and simulation techniques for composite materials and structures. It focuses on the structural and functional properties of engineering composites and the sustainable high performance of components and structures. The multiscale techniques can be also applied to nanocomposites which are important application areas in nanotechnology. There are few books available on this topic.