MRTD (Multi Resolution Time Domain) Method in Electromagnetics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download MRTD (Multi Resolution Time Domain) Method in Electromagnetics PDF full book. Access full book title MRTD (Multi Resolution Time Domain) Method in Electromagnetics by Nathan Bushyager. Download full books in PDF and EPUB format.

MRTD (Multi Resolution Time Domain) Method in Electromagnetics

MRTD (Multi Resolution Time Domain) Method in Electromagnetics PDF Author: Nathan Bushyager
Publisher: Springer Nature
ISBN: 3031016874
Category : Technology & Engineering
Languages : en
Pages : 108

Book Description
This book presents a method that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. The multiresolution time-domain (MRTD) technique, as it is often called, is presented for general basis functions. Additional techniques that are presented here allow the modeling of complex structures using a subcell representation that permits the modeling discrete electromagnetic effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. In this work, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and illustrates the differences between MRTD basis functions. In addition, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with in MRTD.

MRTD (Multi Resolution Time Domain) Method in Electromagnetics

MRTD (Multi Resolution Time Domain) Method in Electromagnetics PDF Author: Nathan Bushyager
Publisher: Springer Nature
ISBN: 3031016874
Category : Technology & Engineering
Languages : en
Pages : 108

Book Description
This book presents a method that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. The multiresolution time-domain (MRTD) technique, as it is often called, is presented for general basis functions. Additional techniques that are presented here allow the modeling of complex structures using a subcell representation that permits the modeling discrete electromagnetic effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. In this work, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and illustrates the differences between MRTD basis functions. In addition, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with in MRTD.

Mrtd ( Multi Resolution Time Domain ) Method In Electomagnetics

Mrtd ( Multi Resolution Time Domain ) Method In Electomagnetics PDF Author: Nathan Adam Bushyager
Publisher:
ISBN: 9781598293593
Category : Electromagnetism
Languages : en
Pages : 108

Book Description
"This book presents a method that allows the use of multiresolution principles in a time domain electromagnetic modeling technique that is applicable to general structures. The multiresolution time-domain (MRTD) technique, as it is often called, is presented for general basis functions. Additional techniques that are presented here allow the modeling of complex structures using a subcell representation that permits the modeling discrete electromagnetic effects at individual equivalent grid points. This is accomplished by transforming the application of the effects at individual points in the grid into the wavelet domain. In this work, the MRTD technique is derived for a general wavelet basis using a relatively compact vector notation that both makes the technique easier to understand and illustrates the differences between MRTD basis functions. In addition, techniques such as the uniaxial perfectly matched layer (UPML) for arbitrary wavelet resolution and non-uniform gridding are presented. Using these techniques, any structure that can be simulated in Yee-FDTD can be modeled with in MRTD."--Publisher's website.

MRTD (Multi Resolution Time Domain) Method in Electromagnetics

MRTD (Multi Resolution Time Domain) Method in Electromagnetics PDF Author: Nathan A. / Tentzeris Bushyager (Manos M.)
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Multiresolution Time Domain Scheme for Electromagnetic Engineering

Multiresolution Time Domain Scheme for Electromagnetic Engineering PDF Author: Yinchao Chen
Publisher: Wiley-Interscience
ISBN:
Category : Mathematics
Languages : en
Pages : 394

Book Description
The rapid development of computer techniques and information technologies in recent decades has fueled the need for efficient tools for electromagnetic modeling of millimeter-wave integrated circuits, high-speed and high-density VLSI circuits, including computer chips and wireless computer applications.

Applications of Multi-resolution Time Domain (mrtd) Method to Electromagnetic Engineering

Applications of Multi-resolution Time Domain (mrtd) Method to Electromagnetic Engineering PDF Author: Yanjie Zhu
Publisher:
ISBN:
Category : Electrical engineering
Languages : en
Pages : 588

Book Description


Multiresolution Frequency Domain Technique for Electromagnetics

Multiresolution Frequency Domain Technique for Electromagnetics PDF Author: Mesut Gökten
Publisher: Springer Nature
ISBN: 3031017145
Category : Technology & Engineering
Languages : en
Pages : 124

Book Description
In this book, a general frequency domain numerical method similar to the finite difference frequency domain (FDFD) technique is presented. The proposed method, called the multiresolution frequency domain (MRFD) technique, is based on orthogonal Battle-Lemarie and biorthogonal Cohen-Daubechies-Feauveau (CDF) wavelets. The objective of developing this new technique is to achieve a frequency domain scheme which exhibits improved computational efficiency figures compared to the traditional FDFD method: reduced memory and simulation time requirements while retaining numerical accuracy. The newly introduced MRFD scheme is successfully applied to the analysis of a number of electromagnetic problems, such as computation of resonance frequencies of one and three dimensional resonators, analysis of propagation characteristics of general guided wave structures, and electromagnetic scattering from two dimensional dielectric objects. The efficiency characteristics of MRFD techniques based on different wavelets are compared to each other and that of the FDFD method. Results indicate that the MRFD techniques provide substantial savings in terms of execution time and memory requirements, compared to the traditional FDFD method. Table of Contents: Introduction / Basics of the Finite Difference Method and Multiresolution Analysis / Formulation of the Multiresolution Frequency Domain Schemes / Application of MRFD Formulation to Closed Space Structures / Application of MRFD Formulation to Open Space Structures / A Multiresolution Frequency Domain Formulation for Inhomogeneous Media / Conclusion

Computational Photonics

Computational Photonics PDF Author: Salah Obayya
Publisher: John Wiley & Sons
ISBN: 1119957508
Category : Science
Languages : en
Pages : 268

Book Description
This book explores the state-of-the art in computational modelling techniques for photonic devices In this book, the author provides a comprehensive coverage of modern numerical modelling techniques for designing photonic devices for use in modern optical telecommunications systems. In addition the book presents the state-of-the-art in computational photonics techniques, covering methods such as full-vectorial finite-element beam propagation, bidirectional beam propagation, complex-envelope alternative direction implicit finite difference time domain, multiresolution time domain, and finite volume time domain. The book guides the reader through the concepts of modelling, analysing, designing and optimising the performance of a wide range of photonic devices by building their own numerical code using these methods. Key Features: Provides a thorough presentation of the state-of-the art in computational modelling techniques for photonics Contains broad coverage of both frequency- and time-domain techniques to suit a wide range of photonic devices Reviews existing commercial software packages for photonics Presents the advantages and disadvantages of the different modelling techniques as well as their suitability for various photonic devices Shows the reader how to model, analyse, design and optimise the performance of a wide range of photonic devices by building their own numerical code using these methods Accompanying website contains the numerical examples representing the numerical techniques in this book, as well as several design examples (http://www.wiley.com/go/obayya_computational) This book will serve as an invaluable reference for researchers, optical telecommunications engineers, engineers in the photonics industry. PhD and MSc students undertaking courses in the areas of photonics and optical telecommunications will also find this book of interest.

Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics

Adaptive Mesh Refinement in Time-Domain Numerical Electromagnetics PDF Author: Costas Sarris
Publisher: Springer Nature
ISBN: 3031016955
Category : Technology & Engineering
Languages : en
Pages : 135

Book Description
This monograph is a comprehensive presentation of state-of-the-art methodologies that can dramatically enhance the efficiency of the finite-difference time-domain (FDTD) technique, the most popular electromagnetic field solver of the time-domain form of Maxwell's equations. These methodologies are aimed at optimally tailoring the computational resources needed for the wideband simulation of microwave and optical structures to their geometry, as well as the nature of the field solutions they support. That is achieved by the development of robust “adaptive meshing” approaches, which amount to varying the total number of unknown field quantities in the course of the simulation to adapt to temporally or spatially localized field features. While mesh adaptation is an extremely desirable FDTD feature, known to reduce simulation times by orders of magnitude, it is not always robust. The specific techniques presented in this book are characterized by stability and robustness. Therefore, they are excellent computer analysis and design (CAD) tools. The book starts by introducing the FDTD technique, along with challenges related to its application to the analysis of real-life microwave and optical structures. It then proceeds to developing an adaptive mesh refinement method based on the use of multiresolution analysis and, more specifically, the Haar wavelet basis. Furthermore, a new method to embed a moving adaptive mesh in FDTD, the dynamically adaptive mesh refinement (AMR) FDTD technique, is introduced and explained in detail. To highlight the properties of the theoretical tools developed in the text, a number of applications are presented, including: Microwave integrated circuits (microstrip filters, couplers, spiral inductors, cavities). Optical power splitters, Y-junctions, and couplers Optical ring resonators Nonlinear optical waveguides. Building on first principles of time-domain electromagnetic simulations, this book presents advanced concepts and cutting-edge modeling techniques in an intuitive way for programmers, engineers, and graduate students. It is designed to provide a solid reference for highly efficient time-domain solvers, employed in a wide range of exciting applications in microwave/millimeter-wave and optical engineering.

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics

Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics PDF Author: Stephen Gedney
Publisher: Springer Nature
ISBN: 3031017129
Category : Technology & Engineering
Languages : en
Pages : 242

Book Description
Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics provides a comprehensive tutorial of the most widely used method for solving Maxwell's equations -- the Finite Difference Time-Domain Method. This book is an essential guide for students, researchers, and professional engineers who want to gain a fundamental knowledge of the FDTD method. It can accompany an undergraduate or entry-level graduate course or be used for self-study. The book provides all the background required to either research or apply the FDTD method for the solution of Maxwell's equations to practical problems in engineering and science. Introduction to the Finite-Difference Time-Domain (FDTD) Method for Electromagnetics guides the reader through the foundational theory of the FDTD method starting with the one-dimensional transmission-line problem and then progressing to the solution of Maxwell's equations in three dimensions. It also provides step by step guides to modeling physical sources, lumped-circuit components, absorbing boundary conditions, perfectly matched layer absorbers, and sub-cell structures. Post processing methods such as network parameter extraction and far-field transformations are also detailed. Efficient implementations of the FDTD method in a high level language are also provided. Table of Contents: Introduction / 1D FDTD Modeling of the Transmission Line Equations / Yee Algorithm for Maxwell's Equations / Source Excitations / Absorbing Boundary Conditions / The Perfectly Matched Layer (PML) Absorbing Medium / Subcell Modeling / Post Processing

Multiresolution Frequency Domain Technique for Electromagnetics

Multiresolution Frequency Domain Technique for Electromagnetics PDF Author: Mesut Gokten
Publisher: Morgan & Claypool Publishers
ISBN: 1627050159
Category : Science
Languages : en
Pages : 137

Book Description
Presents a general frequency domain numerical method similar to the finite difference frequency domain (FDFD) technique. The objective of developing this new technique is to achieve a frequency domain scheme which exhibits improved computational efficiency figures compared to the traditional FDFD method.