Author: K.C. Chang
Publisher: Springer Science & Business Media
ISBN: 1461203856
Category : Mathematics
Languages : en
Pages : 323
Book Description
The book is based on my lecture notes "Infinite dimensional Morse theory and its applications", 1985, Montreal, and one semester of graduate lectures delivered at the University of Wisconsin, Madison, 1987. Since the aim of this monograph is to give a unified account of the topics in critical point theory, a considerable amount of new materials has been added. Some of them have never been published previously. The book is of interest both to researchers following the development of new results, and to people seeking an introduction into this theory. The main results are designed to be as self-contained as possible. And for the reader's convenience, some preliminary background information has been organized. The following people deserve special thanks for their direct roles in help ing to prepare this book. Prof. L. Nirenberg, who first introduced me to this field ten years ago, when I visited the Courant Institute of Math Sciences. Prof. A. Granas, who invited me to give a series of lectures at SMS, 1983, Montreal, and then the above notes, as the primary version of a part of the manuscript, which were published in the SMS collection. Prof. P. Rabinowitz, who provided much needed encouragement during the academic semester, and invited me to teach a semester graduate course after which the lecture notes became the second version of parts of this book. Professors A. Bahri and H. Brezis who suggested the publication of the book in the Birkhiiuser series.
Infinite Dimensional Morse Theory and Multiple Solution Problems
Author: K.C. Chang
Publisher: Springer Science & Business Media
ISBN: 1461203856
Category : Mathematics
Languages : en
Pages : 323
Book Description
The book is based on my lecture notes "Infinite dimensional Morse theory and its applications", 1985, Montreal, and one semester of graduate lectures delivered at the University of Wisconsin, Madison, 1987. Since the aim of this monograph is to give a unified account of the topics in critical point theory, a considerable amount of new materials has been added. Some of them have never been published previously. The book is of interest both to researchers following the development of new results, and to people seeking an introduction into this theory. The main results are designed to be as self-contained as possible. And for the reader's convenience, some preliminary background information has been organized. The following people deserve special thanks for their direct roles in help ing to prepare this book. Prof. L. Nirenberg, who first introduced me to this field ten years ago, when I visited the Courant Institute of Math Sciences. Prof. A. Granas, who invited me to give a series of lectures at SMS, 1983, Montreal, and then the above notes, as the primary version of a part of the manuscript, which were published in the SMS collection. Prof. P. Rabinowitz, who provided much needed encouragement during the academic semester, and invited me to teach a semester graduate course after which the lecture notes became the second version of parts of this book. Professors A. Bahri and H. Brezis who suggested the publication of the book in the Birkhiiuser series.
Publisher: Springer Science & Business Media
ISBN: 1461203856
Category : Mathematics
Languages : en
Pages : 323
Book Description
The book is based on my lecture notes "Infinite dimensional Morse theory and its applications", 1985, Montreal, and one semester of graduate lectures delivered at the University of Wisconsin, Madison, 1987. Since the aim of this monograph is to give a unified account of the topics in critical point theory, a considerable amount of new materials has been added. Some of them have never been published previously. The book is of interest both to researchers following the development of new results, and to people seeking an introduction into this theory. The main results are designed to be as self-contained as possible. And for the reader's convenience, some preliminary background information has been organized. The following people deserve special thanks for their direct roles in help ing to prepare this book. Prof. L. Nirenberg, who first introduced me to this field ten years ago, when I visited the Courant Institute of Math Sciences. Prof. A. Granas, who invited me to give a series of lectures at SMS, 1983, Montreal, and then the above notes, as the primary version of a part of the manuscript, which were published in the SMS collection. Prof. P. Rabinowitz, who provided much needed encouragement during the academic semester, and invited me to teach a semester graduate course after which the lecture notes became the second version of parts of this book. Professors A. Bahri and H. Brezis who suggested the publication of the book in the Birkhiiuser series.
Morse Theory Of Gradient Flows, Concavity And Complexity On Manifolds With Boundary
Author: Gabriel Katz
Publisher: World Scientific
ISBN: 9814719684
Category : Mathematics
Languages : en
Pages : 514
Book Description
This monograph is an account of the author's investigations of gradient vector flows on compact manifolds with boundary. Many mathematical structures and constructions in the book fit comfortably in the framework of Morse Theory and, more generally, of the Singularity Theory of smooth maps.The geometric and combinatorial structures, arising from the interactions of vector flows with the boundary of the manifold, are surprisingly rich. This geometric setting leads organically to many encounters with Singularity Theory, Combinatorics, Differential Topology, Differential Geometry, Dynamical Systems, and especially with the boundary value problems for ordinary differential equations. This diversity of connections animates the book and is the main motivation behind it.The book is divided into two parts. The first part describes the flows in three dimensions. It is more pictorial in nature. The second part deals with the multi-dimensional flows, and thus is more analytical. Each of the nine chapters starts with a description of its purpose and main results. This organization provides the reader with independent entrances into different chapters.
Publisher: World Scientific
ISBN: 9814719684
Category : Mathematics
Languages : en
Pages : 514
Book Description
This monograph is an account of the author's investigations of gradient vector flows on compact manifolds with boundary. Many mathematical structures and constructions in the book fit comfortably in the framework of Morse Theory and, more generally, of the Singularity Theory of smooth maps.The geometric and combinatorial structures, arising from the interactions of vector flows with the boundary of the manifold, are surprisingly rich. This geometric setting leads organically to many encounters with Singularity Theory, Combinatorics, Differential Topology, Differential Geometry, Dynamical Systems, and especially with the boundary value problems for ordinary differential equations. This diversity of connections animates the book and is the main motivation behind it.The book is divided into two parts. The first part describes the flows in three dimensions. It is more pictorial in nature. The second part deals with the multi-dimensional flows, and thus is more analytical. Each of the nine chapters starts with a description of its purpose and main results. This organization provides the reader with independent entrances into different chapters.
Geometric Topology in Dimensions 2 and 3
Author: E.E. Moise
Publisher: Springer Science & Business Media
ISBN: 1461299063
Category : Mathematics
Languages : en
Pages : 272
Book Description
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
Publisher: Springer Science & Business Media
ISBN: 1461299063
Category : Mathematics
Languages : en
Pages : 272
Book Description
Geometric topology may roughly be described as the branch of the topology of manifolds which deals with questions of the existence of homeomorphisms. Only in fairly recent years has this sort of topology achieved a sufficiently high development to be given a name, but its beginnings are easy to identify. The first classic result was the SchOnflies theorem (1910), which asserts that every 1-sphere in the plane is the boundary of a 2-cell. In the next few decades, the most notable affirmative results were the "Schonflies theorem" for polyhedral 2-spheres in space, proved by J. W. Alexander [Ad, and the triangulation theorem for 2-manifolds, proved by T. Rad6 [Rd. But the most striking results of the 1920s were negative. In 1921 Louis Antoine [A ] published an extraordinary paper in which he 4 showed that a variety of plausible conjectures in the topology of 3-space were false. Thus, a (topological) Cantor set in 3-space need not have a simply connected complement; therefore a Cantor set can be imbedded in 3-space in at least two essentially different ways; a topological 2-sphere in 3-space need not be the boundary of a 3-cell; given two disjoint 2-spheres in 3-space, there is not necessarily any third 2-sphere which separates them from one another in 3-space; and so on and on. The well-known "horned sphere" of Alexander [A ] appeared soon thereafter.
An Invitation to Morse Theory
Author: Liviu Nicolaescu
Publisher: Springer Science & Business Media
ISBN: 146141105X
Category : Mathematics
Languages : en
Pages : 366
Book Description
This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Publisher: Springer Science & Business Media
ISBN: 146141105X
Category : Mathematics
Languages : en
Pages : 366
Book Description
This self-contained treatment of Morse theory focuses on applications and is intended for a graduate course on differential or algebraic topology, and will also be of interest to researchers. This is the first textbook to include topics such as Morse-Smale flows, Floer homology, min-max theory, moment maps and equivariant cohomology, and complex Morse theory. The reader is expected to have some familiarity with cohomology theory and differential and integral calculus on smooth manifolds. Some features of the second edition include added applications, such as Morse theory and the curvature of knots, the cohomology of the moduli space of planar polygons, and the Duistermaat-Heckman formula. The second edition also includes a new chapter on Morse-Smale flows and Whitney stratifications, many new exercises, and various corrections from the first edition.
Morse Theory. (AM-51), Volume 51
Author: John Milnor
Publisher: Princeton University Press
ISBN: 1400881803
Category : Mathematics
Languages : en
Pages : 163
Book Description
One of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory. Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master.? Milnor has published five books with Princeton University Press.
Publisher: Princeton University Press
ISBN: 1400881803
Category : Mathematics
Languages : en
Pages : 163
Book Description
One of the most cited books in mathematics, John Milnor's exposition of Morse theory has been the most important book on the subject for more than forty years. Morse theory was developed in the 1920s by mathematician Marston Morse. (Morse was on the faculty of the Institute for Advanced Study, and Princeton published his Topological Methods in the Theory of Functions of a Complex Variable in the Annals of Mathematics Studies series in 1947.) One classical application of Morse theory includes the attempt to understand, with only limited information, the large-scale structure of an object. This kind of problem occurs in mathematical physics, dynamic systems, and mechanical engineering. Morse theory has received much attention in the last two decades as a result of a famous paper in which theoretical physicist Edward Witten relates Morse theory to quantum field theory. Milnor was awarded the Fields Medal (the mathematical equivalent of a Nobel Prize) in 1962 for his work in differential topology. He has since received the National Medal of Science (1967) and the Steele Prize from the American Mathematical Society twice (1982 and 2004) in recognition of his explanations of mathematical concepts across a wide range of scienti.c disciplines. The citation reads, "The phrase sublime elegance is rarely associated with mathematical exposition, but it applies to all of Milnor's writings. Reading his books, one is struck with the ease with which the subject is unfolding and it only becomes apparent after re.ection that this ease is the mark of a master.? Milnor has published five books with Princeton University Press.
Methods for Analysis of Nonlinear Elliptic Boundary Value Problems
Author: I. V. Skrypnik
Publisher: American Mathematical Soc.
ISBN: 9780821897560
Category : Mathematics
Languages : en
Pages : 370
Book Description
The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Publisher: American Mathematical Soc.
ISBN: 9780821897560
Category : Mathematics
Languages : en
Pages : 370
Book Description
The theory of nonlinear elliptic equations is currently one of the most actively developing branches of the theory of partial differential equations. This book investigates boundary value problems for nonlinear elliptic equations of arbitrary order. In addition to monotone operator methods, a broad range of applications of topological methods to nonlinear differential equations is presented: solvability, estimation of the number of solutions, and the branching of solutions of nonlinear equations. Skrypnik establishes, by various procedures, a priori estimates and the regularity of solutions of nonlinear elliptic equations of arbitrary order. Also covered are methods of homogenization of nonlinear elliptic problems in perforated domains. The book is suitable for use in graduate courses in differential equations and nonlinear functional analysis.
Methods in Nonlinear Analysis
Author: Kung-Ching Chang
Publisher: Springer Science & Business Media
ISBN: 3540292322
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.
Publisher: Springer Science & Business Media
ISBN: 3540292322
Category : Mathematics
Languages : en
Pages : 448
Book Description
This book offers a systematic presentation of up-to-date material scattered throughout the literature from the methodology point of view. It reviews the basic theories and methods, with many interesting problems in partial and ordinary differential equations, differential geometry and mathematical physics as applications, and provides the necessary preparation for almost all important aspects in contemporary studies. All methods are illustrated by carefully chosen examples from mechanics, physics, engineering and geometry.
Stratified Morse Theory
Author: Mark Goresky
Publisher: Springer Science & Business Media
ISBN: 3642717144
Category : Mathematics
Languages : en
Pages : 279
Book Description
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
Publisher: Springer Science & Business Media
ISBN: 3642717144
Category : Mathematics
Languages : en
Pages : 279
Book Description
Due to the lack of proper bibliographical sources stratification theory seems to be a "mysterious" subject in contemporary mathematics. This book contains a complete and elementary survey - including an extended bibliography - on stratification theory, including its historical development. Some further important topics in the book are: Morse theory, singularities, transversality theory, complex analytic varieties, Lefschetz theorems, connectivity theorems, intersection homology, complements of affine subspaces and combinatorics. The book is designed for all interested students or professionals in this area.
Challenges for the 21st Century
Author: Louis H. Y. Chen
Publisher: World Scientific
ISBN: 9789812811264
Category : Mathematics
Languages : en
Pages : 532
Book Description
The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.
Publisher: World Scientific
ISBN: 9789812811264
Category : Mathematics
Languages : en
Pages : 532
Book Description
The International Conference on Fundamental Sciences: Mathematics and Theoretical Physics provided a forum for reviewing some of the significant developments in mathematics and theoretical physics in the 20th century; for the leading theorists in these fields to expound and discuss their views on new ideas and trends in the basic sciences as the new millennium approached; for increasing public awareness of the importance of basic research in mathematics and theoretical physics; and for promoting a high level of interest in mathematics and theoretical physics among school students and teachers. This was a major conference, with invited lectures by some of the leading experts in various fields of mathematics and theoretical physics.
Critical Point Theory in Global Analysis and Differential Topology
Author:
Publisher: Academic Press
ISBN: 0080873456
Category : Mathematics
Languages : en
Pages : 405
Book Description
Critical Point Theory in Global Analysis and Differential Topology
Publisher: Academic Press
ISBN: 0080873456
Category : Mathematics
Languages : en
Pages : 405
Book Description
Critical Point Theory in Global Analysis and Differential Topology