Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring PDF full book. Access full book title Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring by Juanjuan SHI. Download full books in PDF and EPUB format.

Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring

Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring PDF Author: Juanjuan SHI
Publisher:
ISBN:
Category : University of Ottawa theses
Languages : en
Pages :

Book Description
As the failure of a bearing could cause cascading breakdowns of the mechanical system and then lead to costly repairs and production delays, bearing condition monitoring has received much attention for decades. One of the primary methods for this purpose is based on the analysis of vibration signal measured by accelerometers because such data are information-rich. The vibration signal collected from a defective bearing is, however, a mixture of several signal components including the fault-generated impulses, interferences from other machine components, and background noise, where fault-induced impulses are further modulated by various low frequency signal contents. The compounded effects of interferences, background noise and the combined modulation effects make it difficult to detect bearing faults. This is further complicated by the nonstationary nature of vibration signals due to speed variations in some cases, such as the bearings in a wind turbine. As such, the main challenges in the vibration-based bearing monitoring are how to address the modulation, noise, interference, and nonstationarity matters. Over the past few decades, considerable research activities have been carried out to deal with the first three issues. Recently, the nonstationarity matter has also attracted strong interests from both industry and academic community. Nevertheless, the existing techniques still have problems (deficiencies) as listed below: (1) The existing enveloping methods for bearing fault feature extraction are often adversely affected by multiple interferences. To eliminate the effect of interferences, the prefiltering is required, which is often parameter-dependent and knowledge-demanding. The selection of proper filter parameters is challenging and even more so in a time-varying environment. (2) Even though filters are properly designed, they are of little use in handling in-band noise and interferences which are also barriers for bearing fault detection, particularly for incipient bearing faults with weak signatures. (3) Conventional approaches for bearing fault detection under constant speed are no longer applicable to the variable speed case because such speed fluctuations may cause zsmearingy of the discrete frequencies in the frequency representation. Most current methods for rotating machinery condition monitoring under time-varying speed require signal resampling based on the shaft rotating frequency. For the bearing case, the shaft rotating frequency is, however, often unavailable as it is coupled with the instantaneous fault characteristic frequency (IFCF) by a fault characteristic coefficient (FCC) which cannot be determined without knowing the fault type. Additionally, the effectiveness of resampling-based methods is largely dependent on the accuracy of resampling procedure which, even if reliable, can complicate the entire fault detection process substantially. (4) Time-frequency analysis (TFA) has proved to be a powerful tool in analyzing nonstationary signal and moreover does not require resampling for bearing fault identification. However, the diffusion of time-frequency representation (TFR) along time and frequency axes caused by lack of energy concentration would handicap the application of the TFA. In fact, the reported TFA applications in bearing fault diagnosis are still very limited. To address the first two aforementioned problems, i.e., (1) and (2), for constant speed cases, two morphology-based methods are proposed to extract bearing fault feature without prefiltering. Another two methods are developed to specifically handle the remaining problems for the bearing fault detection under time-varying speed conditions. These methods are itemized as follows: (1) An efficient enveloping method based on signal Fractal Dimension (FD) for bearing fault feature extraction without prefiltering, (2) A signal decomposition technique based on oscillatory behaviors for noise reduction and interferences removal (including in-band ones), (3) A prefiltering-free and resampling-free approach for bearing fault diagnosis under variable speed condition via the joint application of FD-based envelope demodulation and generalized demodulation (GD), and (4) A combined dual-demodulation transform (DDT) and synchrosqueezing approach for TFR energy concentration level enhancement and bearing fault identification. With respect to constant speed cases, the FD-based enveloping method, where a short time Fractal dimension (STFD) transform is proposed, can suppress interferences and highlight the fault-induced impulsive signature by transforming the vibration signal into a STFD representation. Its effectiveness, however, deteriorates with the increased complexity of the interference frequencies, particularly for multiple interferences with high frequencies. As such, the second method, which isolates fault-induced transients from interferences and noise via oscillatory behavior analysis, is then developed to complement the FD-based enveloping approach. Both methods are independent of frequency information and free from prefiltering, hence eliminating the tedious process for filter parameter specification. The in-band vibration interferences can also be suppressed mainly by the second approach. For the nonstationary cases, a prefiltering-free and resampling-free strategy is developed via the joint application of STFD and GD, from which a resampling-free order spectrum can be derived. This order spectrum can effectively reveal not only the existence of a fault but also its location. However, the success of this method relies largely on an effective enveloping technique. To address this matter and at the same time to exploit the advantages of TFA in nonstationary signal analysis, a TFA technique, involving dual demodulations and an iterative process, is developed and innovatively applied to bearing fault identification. The proposed methods have been validated using both simulation and experimental data collected in our lab. The test results have shown that the first two methods can effectively extract fault signatures, remove the interferences (including in-band ones) without prefiltering, and detect fault types from vibration signals for constant speed cases. The last two have shown to be effective in detecting faults and discern fault types from vibration data collected under variable speed conditions without resampling and prefiltering.

Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring

Morphology-based Fault Feature Extraction and Resampling-free Fault Identification Techniques for Rolling Element Bearing Condition Monitoring PDF Author: Juanjuan SHI
Publisher:
ISBN:
Category : University of Ottawa theses
Languages : en
Pages :

Book Description
As the failure of a bearing could cause cascading breakdowns of the mechanical system and then lead to costly repairs and production delays, bearing condition monitoring has received much attention for decades. One of the primary methods for this purpose is based on the analysis of vibration signal measured by accelerometers because such data are information-rich. The vibration signal collected from a defective bearing is, however, a mixture of several signal components including the fault-generated impulses, interferences from other machine components, and background noise, where fault-induced impulses are further modulated by various low frequency signal contents. The compounded effects of interferences, background noise and the combined modulation effects make it difficult to detect bearing faults. This is further complicated by the nonstationary nature of vibration signals due to speed variations in some cases, such as the bearings in a wind turbine. As such, the main challenges in the vibration-based bearing monitoring are how to address the modulation, noise, interference, and nonstationarity matters. Over the past few decades, considerable research activities have been carried out to deal with the first three issues. Recently, the nonstationarity matter has also attracted strong interests from both industry and academic community. Nevertheless, the existing techniques still have problems (deficiencies) as listed below: (1) The existing enveloping methods for bearing fault feature extraction are often adversely affected by multiple interferences. To eliminate the effect of interferences, the prefiltering is required, which is often parameter-dependent and knowledge-demanding. The selection of proper filter parameters is challenging and even more so in a time-varying environment. (2) Even though filters are properly designed, they are of little use in handling in-band noise and interferences which are also barriers for bearing fault detection, particularly for incipient bearing faults with weak signatures. (3) Conventional approaches for bearing fault detection under constant speed are no longer applicable to the variable speed case because such speed fluctuations may cause zsmearingy of the discrete frequencies in the frequency representation. Most current methods for rotating machinery condition monitoring under time-varying speed require signal resampling based on the shaft rotating frequency. For the bearing case, the shaft rotating frequency is, however, often unavailable as it is coupled with the instantaneous fault characteristic frequency (IFCF) by a fault characteristic coefficient (FCC) which cannot be determined without knowing the fault type. Additionally, the effectiveness of resampling-based methods is largely dependent on the accuracy of resampling procedure which, even if reliable, can complicate the entire fault detection process substantially. (4) Time-frequency analysis (TFA) has proved to be a powerful tool in analyzing nonstationary signal and moreover does not require resampling for bearing fault identification. However, the diffusion of time-frequency representation (TFR) along time and frequency axes caused by lack of energy concentration would handicap the application of the TFA. In fact, the reported TFA applications in bearing fault diagnosis are still very limited. To address the first two aforementioned problems, i.e., (1) and (2), for constant speed cases, two morphology-based methods are proposed to extract bearing fault feature without prefiltering. Another two methods are developed to specifically handle the remaining problems for the bearing fault detection under time-varying speed conditions. These methods are itemized as follows: (1) An efficient enveloping method based on signal Fractal Dimension (FD) for bearing fault feature extraction without prefiltering, (2) A signal decomposition technique based on oscillatory behaviors for noise reduction and interferences removal (including in-band ones), (3) A prefiltering-free and resampling-free approach for bearing fault diagnosis under variable speed condition via the joint application of FD-based envelope demodulation and generalized demodulation (GD), and (4) A combined dual-demodulation transform (DDT) and synchrosqueezing approach for TFR energy concentration level enhancement and bearing fault identification. With respect to constant speed cases, the FD-based enveloping method, where a short time Fractal dimension (STFD) transform is proposed, can suppress interferences and highlight the fault-induced impulsive signature by transforming the vibration signal into a STFD representation. Its effectiveness, however, deteriorates with the increased complexity of the interference frequencies, particularly for multiple interferences with high frequencies. As such, the second method, which isolates fault-induced transients from interferences and noise via oscillatory behavior analysis, is then developed to complement the FD-based enveloping approach. Both methods are independent of frequency information and free from prefiltering, hence eliminating the tedious process for filter parameter specification. The in-band vibration interferences can also be suppressed mainly by the second approach. For the nonstationary cases, a prefiltering-free and resampling-free strategy is developed via the joint application of STFD and GD, from which a resampling-free order spectrum can be derived. This order spectrum can effectively reveal not only the existence of a fault but also its location. However, the success of this method relies largely on an effective enveloping technique. To address this matter and at the same time to exploit the advantages of TFA in nonstationary signal analysis, a TFA technique, involving dual demodulations and an iterative process, is developed and innovatively applied to bearing fault identification. The proposed methods have been validated using both simulation and experimental data collected in our lab. The test results have shown that the first two methods can effectively extract fault signatures, remove the interferences (including in-band ones) without prefiltering, and detect fault types from vibration signals for constant speed cases. The last two have shown to be effective in detecting faults and discern fault types from vibration data collected under variable speed conditions without resampling and prefiltering.

Fault Detection and Model-based Diagnostics in Nonlinear Dynamic Systems

Fault Detection and Model-based Diagnostics in Nonlinear Dynamic Systems PDF Author: Mohsen Nakhaeinejad
Publisher:
ISBN:
Category :
Languages : en
Pages : 282

Book Description
Modeling, fault assessment, and diagnostics of rolling element bearings and induction motors were studied. Dynamic model of rolling element bearings with faults were developed using vector bond graphs. The model incorporates gyroscopic and centrifugal effects, contact deflections and forces, contact slip and separations, and localized faults. Dents and pits on inner race, outer race and balls were modeled through surface profile changes. Experiments with healthy and faulty bearings validated the model. Bearing load zones under various radial loads and clearances were simulated. The model was used to study dynamics of faulty bearings. Effects of type, size and shape of faults on the vibration response and on dynamics of contacts in presence of localized faults were studied. A signal processing algorithm, called feature plot, based on variable window averaging and time feature extraction was proposed for diagnostics of rolling element bearings. Conducting experiments, faults such as dents, pits, and rough surfaces on inner race, balls, and outer race were detected and isolated using the feature plot technique. Time features such as shape factor, skewness, Kurtosis, peak value, crest factor, impulse factor and mean absolute deviation were used in feature plots. Performance of feature plots in bearing fault detection when finite numbers of samples are available was shown. Results suggest that the feature plot technique can detect and isolate localized faults and rough surface defects in rolling element bearings. The proposed diagnostic algorithm has the potential for other applications such as gearbox. A model-based diagnostic framework consisting of modeling, non-linear observability analysis, and parameter tuning was developed for three-phase induction motors. A bond graph model was developed and verified with experiments. Nonlinear observability based on Lie derivatives identified the most observable configuration of sensors and parameters. Continuous-discrete Extended Kalman Filter (EKF) technique was used for parameter tuning to detect stator and rotor faults, bearing friction, and mechanical loads from currents and speed signals. A dynamic process noise technique based on the validation index was implemented for EKF. Complex step Jacobian technique improved computational performance of EKF and observability analysis. Results suggest that motor faults, bearing rotational friction, and mechanical load of induction motors can be detected using model-based diagnostics as long as the configuration of sensors and parameters is observable.

Fault Detection

Fault Detection PDF Author: Daniel Martin
Publisher: Nova Science Publishers
ISBN: 9781536103595
Category : Technology & Engineering
Languages : en
Pages : 100

Book Description
Fault detection and identification (FDI) play a fundamental role in most modern industrial systems and processes. They are essential in ensuring safe and reliable operation. In this book, Chapter One and Chapter Two discuss general systems and the use of linearizations for active fault detection in nonlinear differential algebraic equations. Chapter Three provides a comparative analysis and comprehensive review of the existing fault detection methods, including manual picking and computer-aided automatic/semi-automatic extraction. Chapter Four studies self-adaptive expert systems for process monitoring and fault detection. The final chapter provides a review of an integrated Fault Detection and Diagnostics (FDD) system for HVAC and R based on virtual sensors.

Spectral Techniques and Fault Detection

Spectral Techniques and Fault Detection PDF Author: Mark G. Karpovsky
Publisher:
ISBN:
Category : Fault-tolerant computing
Languages : en
Pages : 632

Book Description


Fault Detection

Fault Detection PDF Author: Léa M. Simon
Publisher:
ISBN: 9781617284410
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description


The Mahalanobis-Taguchi System

The Mahalanobis-Taguchi System PDF Author: Genichi Taguchi
Publisher: McGraw Hill Professional
ISBN: 9780071362634
Category : Business & Economics
Languages : en
Pages : 220

Book Description
This resource shows how to harness the power of an amazing new pattern-recognition and forecasting method from Dr. Genichi Taguchi, a world-renowned quality genius. Fifteen case studies from the U.S. and Japan show how industry giants used the MTS effectively in their organizations. This is the first book on this subject.

Condition Monitoring Algorithms in MATLAB®

Condition Monitoring Algorithms in MATLAB® PDF Author: Adam Jablonski
Publisher: Springer Nature
ISBN: 3030627497
Category : Technology & Engineering
Languages : en
Pages : 542

Book Description
This book offers the first comprehensive and practice-oriented guide to condition monitoring algorithms in MATLAB®. After a concise introduction to vibration theory and signal processing techniques, the attention is moved to the algorithms. Each signal processing algorithm is presented in depth, from the theory to the application, and including extensive explanations on how to use the corresponding toolbox in MATLAB®. In turn, the book introduces various techniques for synthetic signals generation, as well as vibration-based analysis techniques for large data sets. A practical guide on how to directly access data from industrial condition monitoring systems (CMS) using MATLAB® .NET Libraries is also included. Bridging between research and practice, this book offers an extensive guide on condition monitoring algorithms to both scholars and professionals. “Condition Monitoring Algorithms in MATLAB® is a great resource for anyone in the field of condition monitoring. It is a unique as it presents the theory, and a number of examples in Matlab®, which greatly improve the learning experience. It offers numerous examples of coding styles in Matlab, thus supporting graduate students and professionals writing their own codes." Dr. Eric Bechhoefer Founder and CEO of GPMS Developer of the Foresight MX Health and Usage Monitoring System

Signal Processing and Analysis of Electrical Circuit

Signal Processing and Analysis of Electrical Circuit PDF Author: Adam Glowacz
Publisher: MDPI
ISBN: 3039282948
Category : Technology & Engineering
Languages : en
Pages : 604

Book Description
This Special Issue with 35 published articles shows the significance of the topic “Signal Processing and Analysis of Electrical Circuit”. This topic has been gaining increasing attention in recent times. The presented articles can be categorized into four different areas: signal processing and analysis methods of electrical circuits; electrical measurement technology; applications of signal processing of electrical equipment; fault diagnosis of electrical circuits. It is a fact that the development of electrical systems, signal processing methods, and circuits has been accelerating. Electronics applications related to electrical circuits and signal processing methods have gained noticeable attention in recent times. The methods of signal processing and electrical circuits are widely used by engineers and scientists all over the world. The constituent papers represent a significant contribution to electronics and present applications that can be used in industry. Further improvements to the presented approaches are required for realizing their full potential.

Vibration-based Condition Monitoring

Vibration-based Condition Monitoring PDF Author: Robert Bond Randall
Publisher: John Wiley & Sons
ISBN: 0470977582
Category : Technology & Engineering
Languages : en
Pages : 409

Book Description
"Without doubt the best modern and up-to-date text on the topic, wirtten by one of the world leading experts in the field. Should be on the desk of any practitioner or researcher involved in the field of Machine Condition Monitoring" Simon Braun, Israel Institute of Technology Explaining complex ideas in an easy to understand way, Vibration-based Condition Monitoring provides a comprehensive survey of the application of vibration analysis to the condition monitoring of machines. Reflecting the natural progression of these systems by presenting the fundamental material and then moving onto detection, diagnosis and prognosis, Randall presents classic and state-of-the-art research results that cover vibration signals from rotating and reciprocating machines; basic signal processing techniques; fault detection; diagnostic techniques, and prognostics. Developed out of notes for a course in machine condition monitoring given by Robert Bond Randall over ten years at the University of New South Wales, Vibration-based Condition Monitoring: Industrial, Aerospace and Automotive Applications is essential reading for graduate and postgraduate students/ researchers in machine condition monitoring and diagnostics as well as condition monitoring practitioners and machine manufacturers who want to include a machine monitoring service with their product. Includes a number of exercises for each chapter, many based on Matlab, to illustrate basic points as well as to facilitate the use of the book as a textbook for courses in the topic. Accompanied by a website www.wiley.com/go/randall housing exercises along with data sets and implementation code in Matlab for some of the methods as well as other pedagogical aids. Authored by an internationally recognised authority in the area of condition monitoring.

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods

Unsupervised Process Monitoring and Fault Diagnosis with Machine Learning Methods PDF Author: Chris Aldrich
Publisher: Springer Science & Business Media
ISBN: 1447151852
Category : Computers
Languages : en
Pages : 388

Book Description
This unique text/reference describes in detail the latest advances in unsupervised process monitoring and fault diagnosis with machine learning methods. Abundant case studies throughout the text demonstrate the efficacy of each method in real-world settings. The broad coverage examines such cutting-edge topics as the use of information theory to enhance unsupervised learning in tree-based methods, the extension of kernel methods to multiple kernel learning for feature extraction from data, and the incremental training of multilayer perceptrons to construct deep architectures for enhanced data projections. Topics and features: discusses machine learning frameworks based on artificial neural networks, statistical learning theory and kernel-based methods, and tree-based methods; examines the application of machine learning to steady state and dynamic operations, with a focus on unsupervised learning; describes the use of spectral methods in process fault diagnosis.