Monte-Carlo Simulations of Neutron Detector Performance PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Monte-Carlo Simulations of Neutron Detector Performance PDF full book. Access full book title Monte-Carlo Simulations of Neutron Detector Performance by Svyatoslav Mihailovich Tkachenko. Download full books in PDF and EPUB format.

Monte-Carlo Simulations of Neutron Detector Performance

Monte-Carlo Simulations of Neutron Detector Performance PDF Author: Svyatoslav Mihailovich Tkachenko
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Book Description


Monte-Carlo Simulations of Neutron Detector Performance

Monte-Carlo Simulations of Neutron Detector Performance PDF Author: Svyatoslav Mihailovich Tkachenko
Publisher:
ISBN:
Category :
Languages : en
Pages : 190

Book Description


Monte Carlo Simulation of Neutron Detectors

Monte Carlo Simulation of Neutron Detectors PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Neutron detectors are simulated using Monte Carlo methods in order to gain insight into how they work and optimize their performance. Simulated results for a Micromegas neutron beam monitor using a custom computer code are compared with published experimental data to verify the accuracy of the simulation. Different designs (e.g. neutron converter material, gas chamber width, gas pressure) are tested to assess their impact on detector performance. It is determined that a 10B converter foil and 1 mm drift gap width work best for a neutron beam monitor. The Micromegas neutron beam monitor neutronics are evaluated using the computer code MCNP. An optimized set of design criteria are determined that minimize neutron scattering probability in the device. In a best-case scenario, the thermal neutron scattering probability in the detector is 1.1*10−3. Lastly, composite neutron scintillators consisting of fluorescent dopant particles in a lithiated matrix material are simulated using a custom Monte Carlo code. The effects of design parameters such as dopant particle size, dopant volumetric concentration, and dopant and matrix material densities on scintillator characteristics are quantified. For ZnS:Ag particles in a lithiated glass matrix, it is found that dopant particle radii of 1 micron or less result in approximately Gaussian-shaped pulse height spectra and dopant particle radii of 5 microns or less result in practically all neutron absorption events producing scintillation light emission. Self-absorption of scintillation light is not treated in the simulation. Both the Micromegas and composite neutron scintillator simulations use the TRIM code as a heavy-charged particle transport engine.

MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model

MCNP-REN - A Monte Carlo Tool for Neutron Detector Design Without Using the Point Model PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 5

Book Description
The development of neutron detectors makes extensive use of the predictions of detector response through the use of Monte Carlo techniques in conjunction with the point reactor model. Unfortunately, the point reactor model fails to accurately predict detector response in common applications. For this reason, the general Monte Carlo N-Particle code (MCNP) was modified to simulate the pulse streams that would be generated by a neutron detector and normally analyzed by a shift register. This modified code, MCNP - Random Exponentially Distributed Neutron Source (MCNP-REN), along with the Time Analysis Program (TAP) predict neutron detector response without using the point reactor model, making it unnecessary for the user to decide whether or not the assumptions of the point model are met for their application. MCNP-REN is capable of simulating standard neutron coincidence counting as well as neutron multiplicity counting. Measurements of MOX fresh fuel made using the Underwater Coincidence Counter (UWCC) as well as measurements of HEU reactor fuel using the active neutron Research Reactor Fuel Counter (RRFC) are compared with calculations. The method used in MCNP-REN is demonstrated to be fundamentally sound and shown to eliminate the need to use the point model for detector performance predictions.

Particle Physics Reference Library

Particle Physics Reference Library PDF Author: Christian W. Fabjan
Publisher: Springer Nature
ISBN: 3030353184
Category : Elementary particles (Physics).
Languages : en
Pages : 1083

Book Description
This second open access volume of the handbook series deals with detectors, large experimental facilities and data handling, both for accelerator and non-accelerator based experiments. It also covers applications in medicine and life sciences. A joint CERN-Springer initiative, the "Particle Physics Reference Library" provides revised and updated contributions based on previously published material in the well-known Landolt-Boernstein series on particle physics, accelerators and detectors (volumes 21A, B1,B2,C), which took stock of the field approximately one decade ago. Central to this new initiative is publication under full open access

14 MeV Neutrons

14 MeV Neutrons PDF Author: Vladivoj Valkovic
Publisher: CRC Press
ISBN: 1482238012
Category : Science
Languages : en
Pages : 500

Book Description
Despite the often difficult and time-consuming effort of performing experiments with fast (14 MeV) neutrons, these neutrons can offer special insight into nucleus and other materials because of the absence of charge. 14 MeV Neutrons: Physics and Applications explores fast neutrons in basic science and applications to problems in medicine, the envir

Multivariate Optimization of Neutron Detectors Through Modeling

Multivariate Optimization of Neutron Detectors Through Modeling PDF Author: Martin Rodney Williamson
Publisher:
ISBN:
Category :
Languages : en
Pages : 192

Book Description
Due to the eminent shortage of 3He, there exists a significant need to develop a new (or optimize an existing) neutron detection system which would reduce the dependency on the current 3He-based detectors for Domestic Nuclear Detection Office (DNDO) applications. The purpose of this research is to develop a novel methodology for optimizing candidate neutron detector designs using multivariate statistical analysis of Monte Carlo radiation transport code (MCNPX) models. The developed methodology allows the simultaneous optimization of multiple detector parameters with respect to multiple response parameters which measure the overall performance of a candidate neutron detector. This is achieved by applying three statistical strategies in a sequential manner (namely factorial design experiments, response surface methodology, and constrained multivariate optimization) to results generated from MCNPX calculations. Additionally, for organic scintillators, a methodology incorporating the light yield nonproportionality is developed for inclusion into the simulated pulse height spectra (PHS). A Matlab® program was developed to post-process the MCNPX standard and PTRAC output files to automate the process of generating the PHS thus allowing the inclusion of nonlinear light yield equations (Birks equations) into the simulation of the PHS for organic scintillators. The functionality of the developed methodology is demonstrated on the successful multivariate optimization of three neutron detection systems which utilize varied approaches to satisfying the DNDO criteria for an acceptable alternative neutron detector. The first neutron detection system optimized is a 3He-based radiation portal monitor (RPM) based on a generalized version of a currently deployed system. The second system optimized is a 6Li-loaded polymer composite scintillator in the form of a thin film. The final system optimized is a 10B-based plastic scintillator sandwiched between two standard plastic scintillators. Results from the multivariate optimization analysis include not only the identification of which factors significantly affect detector performance, but also the determination of optimum levels for those factors with simultaneous consideration of multiple detector performance responses. Based on the demonstrated functionality of the developed multivariate optimization methodology, application of the methodology in the development process of new candidate neutron detector designs is warranted.

Monte Carlo N-Particle Simulations for Nuclear Detection and Safeguards

Monte Carlo N-Particle Simulations for Nuclear Detection and Safeguards PDF Author: John S. Hendricks
Publisher: Springer Nature
ISBN: 3031041291
Category : Science
Languages : en
Pages : 316

Book Description
This open access book is a pedagogical, examples-based guide to using the Monte Carlo N-Particle (MCNP®) code for nuclear safeguards and non-proliferation applications. The MCNP code, general-purpose software for particle transport simulations, is widely used in the field of nuclear safeguards and non-proliferation for numerous applications including detector design and calibration, and the study of scenarios such as measurement of fresh and spent fuel. This book fills a gap in the existing MCNP software literature by teaching MCNP software usage through detailed examples that were selected based on both student feedback and the real-world experience of the nuclear safeguards group at Los Alamos National Laboratory. MCNP input and output files are explained, and the technical details used in MCNP input file preparation are linked to the MCNP code manual. Benefiting from the authors’ decades of experience in MCNP simulation, this book is essential reading for students, academic researchers, and practitioners whose work in nuclear physics or nuclear engineering is related to non-proliferation or nuclear safeguards. Each chapter comes with downloadable input files for the user to easily reproduce the examples in the text.

Monte Carlo Modeling of Neutron and Gamma-ray Imaging Systems

Monte Carlo Modeling of Neutron and Gamma-ray Imaging Systems PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 6

Book Description
Detailed numerical prototypes are essential to design of efficient and cost-effective neutron and gamma-ray imaging systems. We have exploited the unique capabilities of an LLNL-developed radiation transport code (COG) to develop code modules capable of simulating the performance of neutron and gamma-ray imaging systems over a wide range of source energies. COG allows us to simulate complex, energy-, angle-, and time-dependent radiation sources, model 3-dimensional system geometries with ''real world'' complexity, specify detailed elemental and isotopic distributions and predict the responses of various types of imaging detectors with full Monte Carlo accuray. COG references detailed, evaluated nuclear interaction databases allowingusers to account for multiple scattering, energy straggling, and secondary particle production phenomena which may significantly effect the performance of an imaging system by may be difficult or even impossible to estimate using simple analytical models. This work presents examples illustrating the use of these routines in the analysis of industrial radiographic systems for thick target inspection, nonintrusive luggage and cargoscanning systems, and international treaty verification.

Monte Carlo Simulations of Neutron Well-logging in Granite and Sand to Detect Water and Trichloroethane (TCA).

Monte Carlo Simulations of Neutron Well-logging in Granite and Sand to Detect Water and Trichloroethane (TCA). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 46

Book Description
The Monte Carlo code MCNP is used in simulations of neutron well logging in granite to detect water and TCA (C2H3Cl3), a common ground contaminant, in fractures of 1 cm and 1 mm thickness at various distances and orientations. Also simulated is neutron well logging in wet sand to detect TCA and lead (Pb) at various uniform concentrations. The 3H(d, n) (DT) and2H(d, n) (DD) neutron producing reactions are used in the simulations to assess the relative performance of each. Simulations are also performed to determine the efficiency of several detector materials such as CdZnTe, Ge and NaI as a function of photon energy. Results indicate that, by examining the signal from the 6.11 MeV gamma from the thermal neutron capture of Cl in TCA, trace amounts (few ppm) are detectable in saline free media. Water and TCA filled fractures are also detectable. These results are summarized in Tables 7--21. Motivation for this work is based on the need for detection of trace environmental pollutants as well as possible fracture characterization of geologic media.

A Monte Carlo Method for Determining the Efficiency of a Spherical "dish" Arrangement of Neutron Detectors

A Monte Carlo Method for Determining the Efficiency of a Spherical Author: Joseph Fleck (Jr.)
Publisher:
ISBN:
Category : Monte Carlo method
Languages : en
Pages : 26

Book Description