Monte-Carlo Simulation-Based Statistical Modeling PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Monte-Carlo Simulation-Based Statistical Modeling PDF full book. Access full book title Monte-Carlo Simulation-Based Statistical Modeling by Ding-Geng (Din) Chen. Download full books in PDF and EPUB format.

Monte-Carlo Simulation-Based Statistical Modeling

Monte-Carlo Simulation-Based Statistical Modeling PDF Author: Ding-Geng (Din) Chen
Publisher: Springer
ISBN: 9789811033063
Category : Medical
Languages : en
Pages : 0

Book Description
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Monte-Carlo Simulation-Based Statistical Modeling

Monte-Carlo Simulation-Based Statistical Modeling PDF Author: Ding-Geng (Din) Chen
Publisher: Springer
ISBN: 9811033072
Category : Medical
Languages : en
Pages : 440

Book Description
This book brings together expert researchers engaged in Monte-Carlo simulation-based statistical modeling, offering them a forum to present and discuss recent issues in methodological development as well as public health applications. It is divided into three parts, with the first providing an overview of Monte-Carlo techniques, the second focusing on missing data Monte-Carlo methods, and the third addressing Bayesian and general statistical modeling using Monte-Carlo simulations. The data and computer programs used here will also be made publicly available, allowing readers to replicate the model development and data analysis presented in each chapter, and to readily apply them in their own research. Featuring highly topical content, the book has the potential to impact model development and data analyses across a wide spectrum of fields, and to spark further research in this direction.

Monte Carlo Simulation in Statistical Physics

Monte Carlo Simulation in Statistical Physics PDF Author: Kurt Binder
Publisher: Springer Science & Business Media
ISBN: 366230273X
Category : Science
Languages : en
Pages : 201

Book Description
When learning very formal material one comes to a stage where one thinks one has understood the material. Confronted with a "realiife" problem, the passivity of this understanding sometimes becomes painfully elear. To be able to solve the problem, ideas, methods, etc. need to be ready at hand. They must be mastered (become active knowledge) in order to employ them successfully. Starting from this idea, the leitmotif, or aim, of this book has been to elose this gap as much as possible. How can this be done? The material presented here was born out of a series of lectures at the Summer School held at Figueira da Foz (Portugal) in 1987. The series of lectures was split into two concurrent parts. In one part the "formal material" was presented. Since the background of those attending varied widely, the presentation of the formal material was kept as pedagogic as possible. In the formal part the general ideas behind the Monte Carlo method were developed. The Monte Carlo method has now found widespread appli cation in many branches of science such as physics, chemistry, and biology. Because of this, the scope of the lectures had to be narrowed down. We could not give a complete account and restricted the treatment to the ap plication of the Monte Carlo method to the physics of phase transitions. Here particular emphasis is placed on finite-size effects.

Essentials of Monte Carlo Simulation

Essentials of Monte Carlo Simulation PDF Author: Nick T. Thomopoulos
Publisher: Springer Science & Business Media
ISBN: 1461460220
Category : Mathematics
Languages : en
Pages : 184

Book Description
Essentials of Monte Carlo Simulation focuses on the fundamentals of Monte Carlo methods using basic computer simulation techniques. The theories presented in this text deal with systems that are too complex to solve analytically. As a result, readers are given a system of interest and constructs using computer code, as well as algorithmic models to emulate how the system works internally. After the models are run several times, in a random sample way, the data for each output variable(s) of interest is analyzed by ordinary statistical methods. This book features 11 comprehensive chapters, and discusses such key topics as random number generators, multivariate random variates, and continuous random variates. Over 100 numerical examples are presented as part of the appendix to illustrate useful real world applications. The text also contains an easy to read presentation with minimal use of difficult mathematical concepts. Very little has been published in the area of computer Monte Carlo simulation methods, and this book will appeal to students and researchers in the fields of Mathematics and Statistics.

Monte Carlo Simulation and Resampling Methods for Social Science

Monte Carlo Simulation and Resampling Methods for Social Science PDF Author: Thomas M. Carsey
Publisher: SAGE Publications
ISBN: 1483324923
Category : Social Science
Languages : en
Pages : 304

Book Description
Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.

Monte Carlo Methods in Financial Engineering

Monte Carlo Methods in Financial Engineering PDF Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603

Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis

Introductory Econometrics

Introductory Econometrics PDF Author: Humberto Barreto
Publisher: Cambridge University Press
ISBN: 9780521843195
Category : Business & Economics
Languages : en
Pages : 810

Book Description
This highly accessible and innovative text with supporting web site uses Excel (R) to teach the core concepts of econometrics without advanced mathematics. It enables students to use Monte Carlo simulations in order to understand the data generating process and sampling distribution. Intelligent repetition of concrete examples effectively conveys the properties of the ordinary least squares (OLS) estimator and the nature of heteroskedasticity and autocorrelation. Coverage includes omitted variables, binary response models, basic time series, and simultaneous equations. The authors teach students how to construct their own real-world data sets drawn from the internet, which they can analyze with Excel (R) or with other econometric software. The accompanying web site with text support can be found at www.wabash.edu/econometrics.

A Guide to Monte Carlo Simulations in Statistical Physics

A Guide to Monte Carlo Simulations in Statistical Physics PDF Author: David P. Landau
Publisher: Cambridge University Press
ISBN: 9780521842389
Category : Computers
Languages : en
Pages : 456

Book Description
This updated edition deals with the Monte Carlo simulation of complex physical systems encountered in condensed-matter physics, statistical mechanics, and related fields. It contains many applications, examples, and exercises to help the reader. It is an excellent guide for graduate students and researchers who use computer simulations in their research.

Monte Carlo Statistical Methods

Monte Carlo Statistical Methods PDF Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1475741456
Category : Mathematics
Languages : en
Pages : 670

Book Description
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.

Markov Chain Monte Carlo Simulations and Their Statistical Analysis

Markov Chain Monte Carlo Simulations and Their Statistical Analysis PDF Author: Bernd A. Berg
Publisher: World Scientific
ISBN: 9812389350
Category : Science
Languages : en
Pages : 380

Book Description
This book teaches modern Markov chain Monte Carlo (MC) simulation techniques step by step. The material should be accessible to advanced undergraduate students and is suitable for a course. It ranges from elementary statistics concepts (the theory behind MC simulations), through conventional Metropolis and heat bath algorithms, autocorrelations and the analysis of the performance of MC algorithms, to advanced topics including the multicanonical approach, cluster algorithms and parallel computing. Therefore, it is also of interest to researchers in the field. The book relates the theory directly to Web-based computer code. This allows readers to get quickly started with their own simulations and to verify many numerical examples easily. The present code is in Fortran 77, for which compilers are freely available. The principles taught are important for users of other programming languages, like C or C++.

Introducing Monte Carlo Methods with R

Introducing Monte Carlo Methods with R PDF Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1441915753
Category : Computers
Languages : en
Pages : 297

Book Description
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.