Author: Weiyi Meng
Publisher: Springer
ISBN: 3642374875
Category : Computers
Languages : en
Pages : 509
Book Description
This two volume set LNCS 7825 and LNCS 7826 constitutes the refereed proceedings of the 18th International Conference on Database Systems for Advanced Applications, DASFAA 2013, held in Wuhan, China, in April 2013. The 51 revised full papers and 10 short papers presented together with 2 invited keynote talks, 1 invited paper, 3 industrial papers, 9 demo presentations, 4 tutorials and 1 panel paper were carefully reviewed and selected from a total of 227 submissions. The topics covered in part 1 are social networks; query processing; nearest neighbor search; index; query analysis; XML data management; privacy protection; and uncertain data management; and in part 2: graph data management; physical design; knowledge management; temporal data management; social networks; query processing; data mining; applications; and database applications.
Database Systems for Advanced Applications
Author: Weiyi Meng
Publisher: Springer
ISBN: 3642374875
Category : Computers
Languages : en
Pages : 509
Book Description
This two volume set LNCS 7825 and LNCS 7826 constitutes the refereed proceedings of the 18th International Conference on Database Systems for Advanced Applications, DASFAA 2013, held in Wuhan, China, in April 2013. The 51 revised full papers and 10 short papers presented together with 2 invited keynote talks, 1 invited paper, 3 industrial papers, 9 demo presentations, 4 tutorials and 1 panel paper were carefully reviewed and selected from a total of 227 submissions. The topics covered in part 1 are social networks; query processing; nearest neighbor search; index; query analysis; XML data management; privacy protection; and uncertain data management; and in part 2: graph data management; physical design; knowledge management; temporal data management; social networks; query processing; data mining; applications; and database applications.
Publisher: Springer
ISBN: 3642374875
Category : Computers
Languages : en
Pages : 509
Book Description
This two volume set LNCS 7825 and LNCS 7826 constitutes the refereed proceedings of the 18th International Conference on Database Systems for Advanced Applications, DASFAA 2013, held in Wuhan, China, in April 2013. The 51 revised full papers and 10 short papers presented together with 2 invited keynote talks, 1 invited paper, 3 industrial papers, 9 demo presentations, 4 tutorials and 1 panel paper were carefully reviewed and selected from a total of 227 submissions. The topics covered in part 1 are social networks; query processing; nearest neighbor search; index; query analysis; XML data management; privacy protection; and uncertain data management; and in part 2: graph data management; physical design; knowledge management; temporal data management; social networks; query processing; data mining; applications; and database applications.
Reasoning Web. Semantic Technologies for the Web of Data
Author: Axel Polleres
Publisher: Springer
ISBN: 3642230326
Category : Computers
Languages : en
Pages : 544
Book Description
The Semantic Web aims at enriching the existing Web with meta-data and processing methods so as to provide web-based systems with advanced capabilities, in particular with context awareness and decision support. The objective of this book is to provide a coherent introduction to semantic web methods and research issues with a particular emphasis on reasoning. The 7th reasoning web Summer School, held in August 2011, focused on the central topic of applications of reasoning for the emerging “Web of Data”. The 12 chapters in the present book provide excellent educational material as well as a number of references for further reading. The book not only addresses students working in the area, but also those seeking an entry point to various topics related to reasoning over Web data.
Publisher: Springer
ISBN: 3642230326
Category : Computers
Languages : en
Pages : 544
Book Description
The Semantic Web aims at enriching the existing Web with meta-data and processing methods so as to provide web-based systems with advanced capabilities, in particular with context awareness and decision support. The objective of this book is to provide a coherent introduction to semantic web methods and research issues with a particular emphasis on reasoning. The 7th reasoning web Summer School, held in August 2011, focused on the central topic of applications of reasoning for the emerging “Web of Data”. The 12 chapters in the present book provide excellent educational material as well as a number of references for further reading. The book not only addresses students working in the area, but also those seeking an entry point to various topics related to reasoning over Web data.
Probabilistic Databases
Author: Dan Suciu
Publisher: Morgan & Claypool Publishers
ISBN: 1608456803
Category : Computers
Languages : en
Pages : 183
Book Description
Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques
Publisher: Morgan & Claypool Publishers
ISBN: 1608456803
Category : Computers
Languages : en
Pages : 183
Book Description
Probabilistic databases are databases where the value of some attributes or the presence of some records are uncertain and known only with some probability. Applications in many areas such as information extraction, RFID and scientific data management, data cleaning, data integration, and financial risk assessment produce large volumes of uncertain data, which are best modeled and processed by a probabilistic database. This book presents the state of the art in representation formalisms and query processing techniques for probabilistic data. It starts by discussing the basic principles for representing large probabilistic databases, by decomposing them into tuple-independent tables, block-independent-disjoint tables, or U-databases. Then it discusses two classes of techniques for query evaluation on probabilistic databases. In extensional query evaluation, the entire probabilistic inference can be pushed into the database engine and, therefore, processed as effectively as the evaluation of standard SQL queries. The relational queries that can be evaluated this way are called safe queries. In intensional query evaluation, the probabilistic inference is performed over a propositional formula called lineage expression: every relational query can be evaluated this way, but the data complexity dramatically depends on the query being evaluated, and can be #P-hard. The book also discusses some advanced topics in probabilistic data management such as top-k query processing, sequential probabilistic databases, indexing and materialized views, and Monte Carlo databases. Table of Contents: Overview / Data and Query Model / The Query Evaluation Problem / Extensional Query Evaluation / Intensional Query Evaluation / Advanced Techniques
Foundations of Data Science
Author: Avrim Blum
Publisher: Cambridge University Press
ISBN: 1108617360
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Publisher: Cambridge University Press
ISBN: 1108617360
Category : Computers
Languages : en
Pages : 433
Book Description
This book provides an introduction to the mathematical and algorithmic foundations of data science, including machine learning, high-dimensional geometry, and analysis of large networks. Topics include the counterintuitive nature of data in high dimensions, important linear algebraic techniques such as singular value decomposition, the theory of random walks and Markov chains, the fundamentals of and important algorithms for machine learning, algorithms and analysis for clustering, probabilistic models for large networks, representation learning including topic modelling and non-negative matrix factorization, wavelets and compressed sensing. Important probabilistic techniques are developed including the law of large numbers, tail inequalities, analysis of random projections, generalization guarantees in machine learning, and moment methods for analysis of phase transitions in large random graphs. Additionally, important structural and complexity measures are discussed such as matrix norms and VC-dimension. This book is suitable for both undergraduate and graduate courses in the design and analysis of algorithms for data.
Social Computing
Author: Wanxiang Che
Publisher: Springer
ISBN: 9811020531
Category : Computers
Languages : en
Pages : 736
Book Description
This two volume set (CCIS 623 and 634) constitutes the refereed proceedings of the Second International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE 2016, held in Harbin, China, in August 2016. The 91 revised full papers presented were carefully reviewed and selected from 338 submissions. The papers are organized in topical sections on Research Track (Part I) and Education Track, Industry Track, and Demo Track (Part II) and cover a wide range of topics related to social computing, social media, social network analysis, social modeling, social recommendation, machine learning, data mining.
Publisher: Springer
ISBN: 9811020531
Category : Computers
Languages : en
Pages : 736
Book Description
This two volume set (CCIS 623 and 634) constitutes the refereed proceedings of the Second International Conference of Young Computer Scientists, Engineers and Educators, ICYCSEE 2016, held in Harbin, China, in August 2016. The 91 revised full papers presented were carefully reviewed and selected from 338 submissions. The papers are organized in topical sections on Research Track (Part I) and Education Track, Industry Track, and Demo Track (Part II) and cover a wide range of topics related to social computing, social media, social network analysis, social modeling, social recommendation, machine learning, data mining.
Data and Applications Security XXIII
Author: Ehud Gudes
Publisher: Springer Science & Business Media
ISBN: 3642030076
Category : Computers
Languages : en
Pages : 325
Book Description
This book constitutes the refereed proceedings of the 23nd Annual IFIP WG 11.3 Working Conference on Data and Applications Security held in Montreal, Canada, in July 2009. The 18 revised full papers and 4 short papers were carefully reviewed and selected from 47 submissions. The papers are organized in topical sections on database security; security policies; privacy; intrusion detection and protocols; and trusted computing.
Publisher: Springer Science & Business Media
ISBN: 3642030076
Category : Computers
Languages : en
Pages : 325
Book Description
This book constitutes the refereed proceedings of the 23nd Annual IFIP WG 11.3 Working Conference on Data and Applications Security held in Montreal, Canada, in July 2009. The 18 revised full papers and 4 short papers were carefully reviewed and selected from 47 submissions. The papers are organized in topical sections on database security; security policies; privacy; intrusion detection and protocols; and trusted computing.
Reasoning Web. Explainable Artificial Intelligence
Author: Markus Krötzsch
Publisher: Springer Nature
ISBN: 3030314235
Category : Computers
Languages : en
Pages : 294
Book Description
This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
Publisher: Springer Nature
ISBN: 3030314235
Category : Computers
Languages : en
Pages : 294
Book Description
This volume contains lecture notes of the 15th Reasoning Web Summer School (RW 2019), held in Bolzano, Italy, in September 2019. The research areas of Semantic Web, Linked Data, and Knowledge Graphs have recently received a lot of attention in academia and industry. Since its inception in 2001, the Semantic Web has aimed at enriching the existing Web with meta-data and processing methods, so as to provide Web-based systems with intelligent capabilities such as context awareness and decision support. The Semantic Web vision has been driving many community efforts which have invested a lot of resources in developing vocabularies and ontologies for annotating their resources semantically. Besides ontologies, rules have long been a central part of the Semantic Web framework and are available as one of its fundamental representation tools, with logic serving as a unifying foundation. Linked Data is a related research area which studies how one can make RDF data available on the Web and interconnect it with other data with the aim of increasing its value for everybody. Knowledge Graphs have been shown useful not only for Web search (as demonstrated by Google, Bing, etc.) but also in many application domains.
The Cross-Entropy Method
Author: Reuven Y. Rubinstein
Publisher: Springer Science & Business Media
ISBN: 1475743211
Category : Computers
Languages : en
Pages : 316
Book Description
Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.
Publisher: Springer Science & Business Media
ISBN: 1475743211
Category : Computers
Languages : en
Pages : 316
Book Description
Rubinstein is the pioneer of the well-known score function and cross-entropy methods. Accessible to a broad audience of engineers, computer scientists, mathematicians, statisticians and in general anyone, theorist and practitioner, who is interested in smart simulation, fast optimization, learning algorithms, and image processing.
Data Cleaning
Author: Ihab F. Ilyas
Publisher: Morgan & Claypool
ISBN: 1450371558
Category : Computers
Languages : en
Pages : 284
Book Description
This is an overview of the end-to-end data cleaning process. Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, this book describes various error detection and repair methods, and attempts to anchor these proposals with multiple taxonomies and views. Specifically, it covers four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, it includes a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models. This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.
Publisher: Morgan & Claypool
ISBN: 1450371558
Category : Computers
Languages : en
Pages : 284
Book Description
This is an overview of the end-to-end data cleaning process. Data quality is one of the most important problems in data management, since dirty data often leads to inaccurate data analytics results and incorrect business decisions. Poor data across businesses and the U.S. government are reported to cost trillions of dollars a year. Multiple surveys show that dirty data is the most common barrier faced by data scientists. Not surprisingly, developing effective and efficient data cleaning solutions is challenging and is rife with deep theoretical and engineering problems. This book is about data cleaning, which is used to refer to all kinds of tasks and activities to detect and repair errors in the data. Rather than focus on a particular data cleaning task, this book describes various error detection and repair methods, and attempts to anchor these proposals with multiple taxonomies and views. Specifically, it covers four of the most common and important data cleaning tasks, namely, outlier detection, data transformation, error repair (including imputing missing values), and data deduplication. Furthermore, due to the increasing popularity and applicability of machine learning techniques, it includes a chapter that specifically explores how machine learning techniques are used for data cleaning, and how data cleaning is used to improve machine learning models. This book is intended to serve as a useful reference for researchers and practitioners who are interested in the area of data quality and data cleaning. It can also be used as a textbook for a graduate course. Although we aim at covering state-of-the-art algorithms and techniques, we recognize that data cleaning is still an active field of research and therefore provide future directions of research whenever appropriate.
Handbook of Satisfiability
Author: A. Biere
Publisher: IOS Press
ISBN: 1643681613
Category : Computers
Languages : en
Pages : 1486
Book Description
Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion. This book, the Handbook of Satisfiability, is the second, updated and revised edition of the book first published in 2009 under the same name. The handbook aims to capture the full breadth and depth of SAT and to bring together significant progress and advances in automated solving. Topics covered span practical and theoretical research on SAT and its applications and include search algorithms, heuristics, analysis of algorithms, hard instances, randomized formulae, problem encodings, industrial applications, solvers, simplifiers, tools, case studies and empirical results. SAT is interpreted in a broad sense, so as well as propositional satisfiability, there are chapters covering the domain of quantified Boolean formulae (QBF), constraints programming techniques (CSP) for word-level problems and their propositional encoding, and satisfiability modulo theories (SMT). An extensive bibliography completes each chapter. This second edition of the handbook will be of interest to researchers, graduate students, final-year undergraduates, and practitioners using or contributing to SAT, and will provide both an inspiration and a rich resource for their work. Edmund Clarke, 2007 ACM Turing Award Recipient: "SAT solving is a key technology for 21st century computer science." Donald Knuth, 1974 ACM Turing Award Recipient: "SAT is evidently a killer app, because it is key to the solution of so many other problems." Stephen Cook, 1982 ACM Turing Award Recipient: "The SAT problem is at the core of arguably the most fundamental question in computer science: What makes a problem hard?"
Publisher: IOS Press
ISBN: 1643681613
Category : Computers
Languages : en
Pages : 1486
Book Description
Propositional logic has been recognized throughout the centuries as one of the cornerstones of reasoning in philosophy and mathematics. Over time, its formalization into Boolean algebra was accompanied by the recognition that a wide range of combinatorial problems can be expressed as propositional satisfiability (SAT) problems. Because of this dual role, SAT developed into a mature, multi-faceted scientific discipline, and from the earliest days of computing a search was underway to discover how to solve SAT problems in an automated fashion. This book, the Handbook of Satisfiability, is the second, updated and revised edition of the book first published in 2009 under the same name. The handbook aims to capture the full breadth and depth of SAT and to bring together significant progress and advances in automated solving. Topics covered span practical and theoretical research on SAT and its applications and include search algorithms, heuristics, analysis of algorithms, hard instances, randomized formulae, problem encodings, industrial applications, solvers, simplifiers, tools, case studies and empirical results. SAT is interpreted in a broad sense, so as well as propositional satisfiability, there are chapters covering the domain of quantified Boolean formulae (QBF), constraints programming techniques (CSP) for word-level problems and their propositional encoding, and satisfiability modulo theories (SMT). An extensive bibliography completes each chapter. This second edition of the handbook will be of interest to researchers, graduate students, final-year undergraduates, and practitioners using or contributing to SAT, and will provide both an inspiration and a rich resource for their work. Edmund Clarke, 2007 ACM Turing Award Recipient: "SAT solving is a key technology for 21st century computer science." Donald Knuth, 1974 ACM Turing Award Recipient: "SAT is evidently a killer app, because it is key to the solution of so many other problems." Stephen Cook, 1982 ACM Turing Award Recipient: "The SAT problem is at the core of arguably the most fundamental question in computer science: What makes a problem hard?"