Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603
Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Monte Carlo Methods in Financial Engineering
Author: Paul Glasserman
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603
Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Publisher: Springer Science & Business Media
ISBN: 0387216170
Category : Mathematics
Languages : en
Pages : 603
Book Description
From the reviews: "Paul Glasserman has written an astonishingly good book that bridges financial engineering and the Monte Carlo method. The book will appeal to graduate students, researchers, and most of all, practicing financial engineers [...] So often, financial engineering texts are very theoretical. This book is not." --Glyn Holton, Contingency Analysis
Monte Carlo Methods
Author: Adrian Barbu
Publisher: Springer Nature
ISBN: 9811329710
Category : Mathematics
Languages : en
Pages : 433
Book Description
This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.
Publisher: Springer Nature
ISBN: 9811329710
Category : Mathematics
Languages : en
Pages : 433
Book Description
This book seeks to bridge the gap between statistics and computer science. It provides an overview of Monte Carlo methods, including Sequential Monte Carlo, Markov Chain Monte Carlo, Metropolis-Hastings, Gibbs Sampler, Cluster Sampling, Data Driven MCMC, Stochastic Gradient descent, Langevin Monte Carlo, Hamiltonian Monte Carlo, and energy landscape mapping. Due to its comprehensive nature, the book is suitable for developing and teaching graduate courses on Monte Carlo methods. To facilitate learning, each chapter includes several representative application examples from various fields. The book pursues two main goals: (1) It introduces researchers to applying Monte Carlo methods to broader problems in areas such as Computer Vision, Computer Graphics, Machine Learning, Robotics, Artificial Intelligence, etc.; and (2) it makes it easier for scientists and engineers working in these areas to employ Monte Carlo methods to enhance their research.
An Introduction to Sequential Monte Carlo
Author: Nicolas Chopin
Publisher: Springer Nature
ISBN: 3030478459
Category : Mathematics
Languages : en
Pages : 378
Book Description
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Publisher: Springer Nature
ISBN: 3030478459
Category : Mathematics
Languages : en
Pages : 378
Book Description
This book provides a general introduction to Sequential Monte Carlo (SMC) methods, also known as particle filters. These methods have become a staple for the sequential analysis of data in such diverse fields as signal processing, epidemiology, machine learning, population ecology, quantitative finance, and robotics. The coverage is comprehensive, ranging from the underlying theory to computational implementation, methodology, and diverse applications in various areas of science. This is achieved by describing SMC algorithms as particular cases of a general framework, which involves concepts such as Feynman-Kac distributions, and tools such as importance sampling and resampling. This general framework is used consistently throughout the book. Extensive coverage is provided on sequential learning (filtering, smoothing) of state-space (hidden Markov) models, as this remains an important application of SMC methods. More recent applications, such as parameter estimation of these models (through e.g. particle Markov chain Monte Carlo techniques) and the simulation of challenging probability distributions (in e.g. Bayesian inference or rare-event problems), are also discussed. The book may be used either as a graduate text on Sequential Monte Carlo methods and state-space modeling, or as a general reference work on the area. Each chapter includes a set of exercises for self-study, a comprehensive bibliography, and a “Python corner,” which discusses the practical implementation of the methods covered. In addition, the book comes with an open source Python library, which implements all the algorithms described in the book, and contains all the programs that were used to perform the numerical experiments.
Making Monte Carlo
Author: Mark Braude
Publisher: Simon and Schuster
ISBN: 147670970X
Category : Biography & Autobiography
Languages : en
Pages : 304
Book Description
"A rollicking narrative history of Jazz Age Monte Carlo, chronicling the city's rise from WWI's ashes to become one of the world's most storied, infamous playgrounds of the rich, only to be crushed under it's own weight ten years later"--Provided by publisher.
Publisher: Simon and Schuster
ISBN: 147670970X
Category : Biography & Autobiography
Languages : en
Pages : 304
Book Description
"A rollicking narrative history of Jazz Age Monte Carlo, chronicling the city's rise from WWI's ashes to become one of the world's most storied, infamous playgrounds of the rich, only to be crushed under it's own weight ten years later"--Provided by publisher.
Monte Carlo Statistical Methods
Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1475741456
Category : Mathematics
Languages : en
Pages : 670
Book Description
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
Publisher: Springer Science & Business Media
ISBN: 1475741456
Category : Mathematics
Languages : en
Pages : 670
Book Description
We have sold 4300 copies worldwide of the first edition (1999). This new edition contains five completely new chapters covering new developments.
Markov Chain Monte Carlo
Author: Dani Gamerman
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264
Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Publisher: CRC Press
ISBN: 9780412818202
Category : Mathematics
Languages : en
Pages : 264
Book Description
Bridging the gap between research and application, Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference provides a concise, and integrated account of Markov chain Monte Carlo (MCMC) for performing Bayesian inference. This volume, which was developed from a short course taught by the author at a meeting of Brazilian statisticians and probabilists, retains the didactic character of the original course text. The self-contained text units make MCMC accessible to scientists in other disciplines as well as statisticians. It describes each component of the theory in detail and outlines related software, which is of particular benefit to applied scientists.
Monte Carlo Simulation and Resampling Methods for Social Science
Author: Thomas M. Carsey
Publisher: SAGE Publications
ISBN: 1483324923
Category : Social Science
Languages : en
Pages : 304
Book Description
Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.
Publisher: SAGE Publications
ISBN: 1483324923
Category : Social Science
Languages : en
Pages : 304
Book Description
Taking the topics of a quantitative methodology course and illustrating them through Monte Carlo simulation, this book examines abstract principles, such as bias, efficiency, and measures of uncertainty in an intuitive, visual way. Instead of thinking in the abstract about what would happen to a particular estimator "in repeated samples," the book uses simulation to actually create those repeated samples and summarize the results. The book includes basic examples appropriate for readers learning the material for the first time, as well as more advanced examples that a researcher might use to evaluate an estimator he or she was using in an actual research project. The book also covers a wide range of topics related to Monte Carlo simulation, such as resampling methods, simulations of substantive theory, simulation of quantities of interest (QI) from model results, and cross-validation. Complete R code from all examples is provided so readers can replicate every analysis presented using R.
Introducing Monte Carlo Methods with R
Author: Christian Robert
Publisher: Springer Science & Business Media
ISBN: 1441915753
Category : Computers
Languages : en
Pages : 297
Book Description
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Publisher: Springer Science & Business Media
ISBN: 1441915753
Category : Computers
Languages : en
Pages : 297
Book Description
This book covers the main tools used in statistical simulation from a programmer’s point of view, explaining the R implementation of each simulation technique and providing the output for better understanding and comparison.
Monte Carlo
Author: George Fishman
Publisher: Springer Science & Business Media
ISBN: 1475725531
Category : Mathematics
Languages : en
Pages : 721
Book Description
Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.
Publisher: Springer Science & Business Media
ISBN: 1475725531
Category : Mathematics
Languages : en
Pages : 721
Book Description
Apart from a thorough exploration of all the important concepts, this volume includes over 75 algorithms, ready for putting into practice. The book also contains numerous hands-on implementations of selected algorithms to demonstrate applications in realistic settings. Readers are assumed to have a sound understanding of calculus, introductory matrix analysis, and intermediate statistics, but otherwise the book is self-contained. Suitable for graduates and undergraduates in mathematics and engineering, in particular operations research, statistics, and computer science.
Monte Carlo Frameworks
Author: Daniel J. Duffy
Publisher: John Wiley & Sons
ISBN: 0470684062
Category : Business & Economics
Languages : en
Pages : 775
Book Description
This is one of the first books that describe all the steps that are needed in order to analyze, design and implement Monte Carlo applications. It discusses the financial theory as well as the mathematical and numerical background that is needed to write flexible and efficient C++ code using state-of-the art design and system patterns, object-oriented and generic programming models in combination with standard libraries and tools. Includes a CD containing the source code for all examples. It is strongly advised that you experiment with the code by compiling it and extending it to suit your needs. Support is offered via a user forum on www.datasimfinancial.com where you can post queries and communicate with other purchasers of the book. This book is for those professionals who design and develop models in computational finance. This book assumes that you have a working knowledge of C ++.
Publisher: John Wiley & Sons
ISBN: 0470684062
Category : Business & Economics
Languages : en
Pages : 775
Book Description
This is one of the first books that describe all the steps that are needed in order to analyze, design and implement Monte Carlo applications. It discusses the financial theory as well as the mathematical and numerical background that is needed to write flexible and efficient C++ code using state-of-the art design and system patterns, object-oriented and generic programming models in combination with standard libraries and tools. Includes a CD containing the source code for all examples. It is strongly advised that you experiment with the code by compiling it and extending it to suit your needs. Support is offered via a user forum on www.datasimfinancial.com where you can post queries and communicate with other purchasers of the book. This book is for those professionals who design and develop models in computational finance. This book assumes that you have a working knowledge of C ++.