Monotone Nonautonomous Dynamical Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Monotone Nonautonomous Dynamical Systems PDF full book. Access full book title Monotone Nonautonomous Dynamical Systems by David N. Cheban. Download full books in PDF and EPUB format.

Monotone Nonautonomous Dynamical Systems

Monotone Nonautonomous Dynamical Systems PDF Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3031600576
Category :
Languages : en
Pages : 475

Book Description


Monotone Nonautonomous Dynamical Systems

Monotone Nonautonomous Dynamical Systems PDF Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3031600576
Category :
Languages : en
Pages : 475

Book Description


Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition)

Global Attractors Of Non-autonomous Dynamical And Control Systems (2nd Edition) PDF Author: David N Cheban
Publisher: World Scientific
ISBN: 9814619841
Category : Mathematics
Languages : en
Pages : 616

Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations.The new Chapters 15-17 added to this edition include some results concerning Control Dynamical Systems — the global attractors, asymptotic stability of switched systems, absolute asymptotic stability of differential/difference equations and inclusions — published in the works of author in recent years.

An Introduction To Nonautonomous Dynamical Systems And Their Attractors

An Introduction To Nonautonomous Dynamical Systems And Their Attractors PDF Author: Peter Kloeden
Publisher: World Scientific
ISBN: 9811228671
Category : Mathematics
Languages : en
Pages : 157

Book Description
The nature of time in a nonautonomous dynamical system is very different from that in autonomous systems, which depend only on the time that has elapsed since starting rather than on the actual time itself. Consequently, limiting objects may not exist in actual time as in autonomous systems. New concepts of attractors in nonautonomous dynamical system are thus required.In addition, the definition of a dynamical system itself needs to be generalised to the nonautonomous context. Here two possibilities are considered: two-parameter semigroups or processes and the skew product flows. Their attractors are defined in terms of families of sets that are mapped onto each other under the dynamics rather than a single set as in autonomous systems. Two types of attraction are now possible: pullback attraction, which depends on the behaviour from the system in the distant past, and forward attraction, which depends on the behaviour of the system in the distant future. These are generally independent of each other.The component subsets of pullback and forward attractors exist in actual time. The asymptotic behaviour in the future limit is characterised by omega-limit sets, in terms of which form what are called forward attracting sets. They are generally not invariant in the conventional sense, but are asymptotically invariant in general and, if the future dynamics is appropriately uniform, also asymptotically negatively invariant.Much of this book is based on lectures given by the authors in Frankfurt and Wuhan. It was written mainly when the first author held a 'Thousand Expert' Professorship at the Huazhong University of Science and Technology in Wuhan.

Global Attractors of Non-autonomous Dissipative Dynamical Systems

Global Attractors of Non-autonomous Dissipative Dynamical Systems PDF Author: David N. Cheban
Publisher: World Scientific
ISBN: 9812560289
Category : Mathematics
Languages : en
Pages : 524

Book Description
- The book is intended to the experts in qualitative theory of differential equations, dynamical systems and their applications

Global Attractors Of Nonautonomous Dissipative Dynamical Systems

Global Attractors Of Nonautonomous Dissipative Dynamical Systems PDF Author: David N Cheban
Publisher: World Scientific
ISBN: 9814481866
Category : Mathematics
Languages : en
Pages : 524

Book Description
The study of attractors of dynamical systems occupies an important position in the modern qualitative theory of differential equations. This engaging volume presents an authoritative overview of both autonomous and non-autonomous dynamical systems, including the global compact attractor. From an in-depth introduction to the different types of dissipativity and attraction, the book takes a comprehensive look at the connections between them, and critically discusses applications of general results to different classes of differential equations. Intended for experts in qualitative theory of differential equations, dynamical systems and their applications, this accessible book can also serve as an important resource for senior students and lecturers.

Nonautonomous Dynamics

Nonautonomous Dynamics PDF Author: David N. Cheban
Publisher: Springer Nature
ISBN: 3030342921
Category : Mathematics
Languages : en
Pages : 434

Book Description
This book emphasizes those topological methods (of dynamical systems) and theories that are useful in the study of different classes of nonautonomous evolutionary equations. The content is developed over six chapters, providing a thorough introduction to the techniques used in the Chapters III-VI described by Chapter I-II. The author gives a systematic treatment of the basic mathematical theory and constructive methods for Nonautonomous Dynamics. They show how these diverse topics are connected to other important parts of mathematics, including Topology, Functional Analysis and Qualitative Theory of Differential/Difference Equations. Throughout the book a nice balance is maintained between rigorous mathematics and applications (ordinary differential/difference equations, functional differential equations and partial difference equations). The primary readership includes graduate and PhD students and researchers in in the field of dynamical systems and their applications (control theory, economic dynamics, mathematical theory of climate, population dynamics, oscillation theory etc).

Nonautonomous Dynamical Systems

Nonautonomous Dynamical Systems PDF Author: Peter E. Kloeden
Publisher: American Mathematical Soc.
ISBN: 0821868713
Category : Mathematics
Languages : en
Pages : 274

Book Description
The theory of nonautonomous dynamical systems in both of its formulations as processes and skew product flows is developed systematically in this book. The focus is on dissipative systems and nonautonomous attractors, in particular the recently introduced concept of pullback attractors. Linearization theory, invariant manifolds, Lyapunov functions, Morse decompositions and bifurcations for nonautonomous systems and set-valued generalizations are also considered as well as applications to numerical approximations, switching systems and synchronization. Parallels with corresponding theories of control and random dynamical systems are briefly sketched. With its clear and systematic exposition, many examples and exercises, as well as its interesting applications, this book can serve as a text at the beginning graduate level. It is also useful for those who wish to begin their own independent research in this rapidly developing area.

Geometric Theory of Discrete Nonautonomous Dynamical Systems

Geometric Theory of Discrete Nonautonomous Dynamical Systems PDF Author: Christian Pötzsche
Publisher: Springer
ISBN: 3642142583
Category : Mathematics
Languages : en
Pages : 422

Book Description
Nonautonomous dynamical systems provide a mathematical framework for temporally changing phenomena, where the law of evolution varies in time due to seasonal, modulation, controlling or even random effects. Our goal is to provide an approach to the corresponding geometric theory of nonautonomous discrete dynamical systems in infinite-dimensional spaces by virtue of 2-parameter semigroups (processes). These dynamical systems are generated by implicit difference equations, which explicitly depend on time. Compactness and dissipativity conditions are provided for such problems in order to have attractors using the natural concept of pullback convergence. Concerning a necessary linear theory, our hyperbolicity concept is based on exponential dichotomies and splittings. This concept is in turn used to construct nonautonomous invariant manifolds, so-called fiber bundles, and deduce linearization theorems. The results are illustrated using temporal and full discretizations of evolutionary differential equations.

Topological Entropy of Nonautonomous Piecewise Monotone Dynamical Systems on the Interval

Topological Entropy of Nonautonomous Piecewise Monotone Dynamical Systems on the Interval PDF Author: Sergiy Kolyada
Publisher:
ISBN:
Category :
Languages : en
Pages : 18

Book Description


Nonautonomous Dynamical Systems in the Life Sciences

Nonautonomous Dynamical Systems in the Life Sciences PDF Author: Peter E. Kloeden
Publisher: Springer
ISBN: 3319030809
Category : Mathematics
Languages : en
Pages : 326

Book Description
Nonautonomous dynamics describes the qualitative behavior of evolutionary differential and difference equations, whose right-hand side is explicitly time dependent. Over recent years, the theory of such systems has developed into a highly active field related to, yet recognizably distinct from that of classical autonomous dynamical systems. This development was motivated by problems of applied mathematics, in particular in the life sciences where genuinely nonautonomous systems abound. The purpose of this monograph is to indicate through selected, representative examples how often nonautonomous systems occur in the life sciences and to outline the new concepts and tools from the theory of nonautonomous dynamical systems that are now available for their investigation.