Molecular Relaxation in Liquids

Molecular Relaxation in Liquids PDF Author: Biman Bagchi
Publisher: Oxford University Press
ISBN: 0199863334
Category : Science
Languages : en
Pages : 331

Book Description
This book brings together many different relaxation phenomena in liquids under a common umbrella and provides a unified view of apparently diverse phenomena. It aligns recent experimental results obtained with modern techniques with recent theoretical developments. Such close interaction between experiment and theory in this area goes back to the works of Einstein, Smoluchowski, Kramers' and de Gennes. Development of ultrafast laser spectroscopy recently allowed study of various relaxation processes directly in the time domain, with time scales going down to picosecond (ps) and femtosecond (fs) time scales. This was a remarkable advance because many of the fundamental chemical processes occur precisely in this range and was inaccessible before the 1980s. Since then, an enormous wealth of information has been generated by many groups around the world, who have discovered many interesting phenomena that has fueled further growth in this field. As emphasized throughout the book, the seemingly different phenomena studied in this area are often closely related at a fundamental level. Biman Bagchi explains why relatively small although fairly sophisticated theoretical tools have been successful in explaining a wealth of experimental data at a semi-phenomenological level.

Molecular Relaxation in Liquids

Molecular Relaxation in Liquids PDF Author: Stephan Paul Velsko
Publisher:
ISBN:
Category : Isomerization
Languages : en
Pages : 296

Book Description


Molecular Relaxation in Liquids

Molecular Relaxation in Liquids PDF Author: Biman Bagchi
Publisher: OUP USA
ISBN: 0199863326
Category : Science
Languages : en
Pages : 331

Book Description
The book captures recent and exciting developments in molecular relaxation in liquids.

Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set

Encyclopedia of Glass Science, Technology, History, and Culture Two Volume Set PDF Author: Pascal Richet
Publisher: John Wiley & Sons
ISBN: 1118799399
Category : Technology & Engineering
Languages : en
Pages : 1568

Book Description
This Encyclopedia begins with an introduction summarizing itsscope and content. Glassmaking; Structure of Glass, GlassPhysics,Transport Properties, Chemistry of Glass, Glass and Light,Inorganic Glass Families, Organic Glasses, Glass and theEnvironment, Historical and Economical Aspect of Glassmaking,History of Glass, Glass and Art, and outlinepossible newdevelopments and uses as presented by the best known people in thefield (C.A. Angell, for example). Sections and chapters arearranged in a logical order to ensure overall consistency and avoiduseless repetitions. All sections are introduced by a briefintroduction and attractive illustration. Newly investigatedtopics will be addresses, with the goal of ensuring that thisEncyclopedia remains a reference work for years to come.

Molecular Liquids

Molecular Liquids PDF Author: A.J. Barnes
Publisher: Springer Science & Business Media
ISBN: 9400964633
Category : Science
Languages : en
Pages : 594

Book Description
This ASI was planned to make a major contribution to the teaching of the principles and methods used in liquid phase ~esearch and to encourage the setting up of collaborative projects, as advocated by the European Molecular Liquids Group (secretary: Dr J. Yarwood, University of Durham, U. K. ). During the past five years considerable progress has been made in studying molecular liquids. The undoubted advantages of international collaboration led to the formation of the European Molecular Liquids Group (EMLG) in July 1981. The activities of the EMLG were widely disseminated in a special session of the European Congress on Molecular Spectroscopy (EUCMOS) held in September 1981 (for details, see J. Mol. Structure, 80 (1982) 375 - 421). Following the success of this meeting, it was thought that the aims and objectives of the E~G would be best served by the organisation of a broader-based gathering designed to attract those interested in the study of the structure, dynamics and interactions in the liquid state. Thanks to the generous support by the Scientific Affairs Division of NATO, it was possible to hold a NATO ASI on Molecular Liquids at the Italian Centre of Stanford University, Florence, Italy during June-July 1983. This book is based on the lectures presented at that meeting. The contents of this volume cover the three broad areas of current liquid phase research: (a) Analytical theory.

Nuclear Spin Relaxation in Liquids

Nuclear Spin Relaxation in Liquids PDF Author: Jozef Kowalewski
Publisher: CRC Press
ISBN: 1351264591
Category : Science
Languages : en
Pages : 372

Book Description
Nuclear magnetic resonance (NMR) is widely used across many fields of science because of the rich data it produces, and some of the most valuable data come from studies of nuclear spin relaxation in solution. The first edition of this book, published more than a decade ago, provided an accessible and cohesive treatment of the field. The present second edition is a significant update, covering important new developments in recent years. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure and special topics such as relaxation in systems with quadrupolar nuclei, in paramagnetic systems and in long-living spin states. Avoiding overly demanding mathematics, the authors explain spin relaxation in a manner that anyone with a familiarity with NMR can follow. The focus is on illustrating and explaining the physical nature of relaxation phenomena. Nuclear Spin Relaxation in Liquids: Theory, Experiments and Applications, 2nd edition, provides useful supplementary reading for graduate students and is a valuable reference for NMR spectroscopists, whether in chemistry, physics or biochemistry.

Dielectric Relaxation and Dynamics of Polar Molecules

Dielectric Relaxation and Dynamics of Polar Molecules PDF Author: Vladimir I. Ga?duk
Publisher: World Scientific
ISBN: 9789810221232
Category : Science
Languages : en
Pages : 664

Book Description
The topics covered in this book provide a qualitative and sometimes quantitative classic description of the wide-band 0-THz dielectric spectra of polar liquids, molecular libration-rotation (which is the reason for dielectric loss and absorption of electromagnetic waves), simple molecular models differing by the intermolecular-potential profiles, and present a comparison between the theoretical and experimental dependencies and derivation of the main results. A new feature is the application of a number of analytical models to different substances, including strongly absorbing nonassociating liquids, liquid water, water bound by macromolecules, and gas-like liquids. The presentation of the theory in this book is also new. It is based on the dynamic method in which the Brownian reorientations are considered implicitly, without direct solution of stochastic equations. This approach simplifies the theory. Senior students and experimentalists will find many of the results valuable.

Nuclear Spin Relaxation in Liquids

Nuclear Spin Relaxation in Liquids PDF Author: Jozef Kowalewski
Publisher: CRC Press
ISBN: 1420012193
Category : Science
Languages : en
Pages : 440

Book Description
Nuclear magnetic resonance (NMR) is widely used across many fields because of the rich data it produces, and some of the most valuable data come from the study of nuclear spin relaxation in solution. While described to varying degrees in all major NMR books, spin relaxation is often perceived as a difficult, if not obscure, topic, and an accessible, cohesive treatment has been nearly impossible to find. Collecting relaxation theory, experimental techniques, and illustrative applications into a single volume, this book clarifies the nature of the phenomenon, shows how to study it, and explains why such studies are worthwhile. Coverage ranges from basic to rigorous theory and from simple to sophisticated experimental methods, and the level of detail is somewhat greater than most other NMR texts. Topics include cross-relaxation, multispin phenomena, relaxation studies of molecular dynamics and structure, and special topics such as relaxation in systems with quadrupolar nuclei and paramagnetic systems. Avoiding overly demanding mathematics, the authors explain relaxation in a manner that anyone with a basic familiarity with NMR can follow, regardless of their specialty. The focus is on illustrating and explaining the physical nature of the phenomena, rather than the intricate details. Nuclear Spin Relaxation in Liquids: Theory, Experiments, and Applications forms useful supplementary reading for graduate students and a valuable desk reference for NMR spectroscopists, whether in chemistry, physics, chemical physics, or biochemistry.

Molecular Interactions and Relaxation in Liquids

Molecular Interactions and Relaxation in Liquids PDF Author: Henryk Ratajczak
Publisher:
ISBN:
Category :
Languages : en
Pages : 228

Book Description


Relaxation Phenomena

Relaxation Phenomena PDF Author: Wolfgang Haase
Publisher: Springer Science & Business Media
ISBN: 3662097478
Category : Science
Languages : en
Pages : 732

Book Description
The authors describe the electric, magnetic and other relaxational processes in a wide spectrum of materials: liquid crystals, molecular magnets, polymers, high-Tc superconductors and glasses. The book summarizes the phenomenological fundamentals and the experimental methods used. A detailed description of molecular and collective dynamics in the broad range of liquid crystals is presented. Magnetic systems, high-Tc superconductors, polymers and glasses are an important subject of matter. It is shown that the researchers working on relaxation processes in different fields of materials sciences are dealing with the same physical fundamentals, but are sometimes using slightly different terms. The book is addressed to scientists, engineers, graduate and undergraduate students, experimentalists and theorists in physics, chemistry, materials sciences and electronic engineering. Many internationally well known experts contribute to it.