Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption PDF full book. Access full book title Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption by . Download full books in PDF and EPUB format.

Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption

Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The complex structures of the Templated Mesoporous Materials (TMMs) are difficult to capture using experiments. On the other hand, detailed structural information is required in order to study the confinement effects and predict material properties. We therefore present a methodology to prepare realistic molecular models of the TMMs using molecular simulations. Mimetic simulations are used to simulate the synthesis of the TMMs resulting in mesoscale models of the materials. Using this technique, we have developed models for SBA-15 and the Mesostructured Cellular Foams (MCF). The mimetic simulations also allow us to study the phase diagrams of the surfactants involved in the synthesis. We have investigated the ternary phase diagrams (surfactant-oil-water and surfactant-silica-water) of model triblock surfactants and have highlighted the effects of oil on the ordered structures. The simulation results for the effect of oil are in partial agreement with the experiments. Next, we devise a technique to convert the mesoscale TMM models into atomistic ones. The method has been demonstrated by preparing atomistic models for SBA-15. The physical properties of the models (pore size distribution, surface area, TEM and AFM images) are compared to the experimental ones. The porosities and the surface areas of the models are in quantitative agreement with those of the experimental SBA-15, whereas the pore size distribution and TEM results agree qualitatively with the experiments. We also present new methods for characterizing model structures including a fast technique for computing pore size distributions. The results from our new technique show speed increases of several orders of magnitude compared to the existing method. Finally we simulate the adsorption of Argon inside the model SBA-15 using Grand canonical Monte Carlo simulations. The adsorption isotherm from the model is in semi-quantitative agreement with that of an experimental SBA-15. The adsorption behavior of several.

Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption

Molecular Models for Templated Mesoporous Materials: Mimetic Simulation and Gas Adsorption PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The complex structures of the Templated Mesoporous Materials (TMMs) are difficult to capture using experiments. On the other hand, detailed structural information is required in order to study the confinement effects and predict material properties. We therefore present a methodology to prepare realistic molecular models of the TMMs using molecular simulations. Mimetic simulations are used to simulate the synthesis of the TMMs resulting in mesoscale models of the materials. Using this technique, we have developed models for SBA-15 and the Mesostructured Cellular Foams (MCF). The mimetic simulations also allow us to study the phase diagrams of the surfactants involved in the synthesis. We have investigated the ternary phase diagrams (surfactant-oil-water and surfactant-silica-water) of model triblock surfactants and have highlighted the effects of oil on the ordered structures. The simulation results for the effect of oil are in partial agreement with the experiments. Next, we devise a technique to convert the mesoscale TMM models into atomistic ones. The method has been demonstrated by preparing atomistic models for SBA-15. The physical properties of the models (pore size distribution, surface area, TEM and AFM images) are compared to the experimental ones. The porosities and the surface areas of the models are in quantitative agreement with those of the experimental SBA-15, whereas the pore size distribution and TEM results agree qualitatively with the experiments. We also present new methods for characterizing model structures including a fast technique for computing pore size distributions. The results from our new technique show speed increases of several orders of magnitude compared to the existing method. Finally we simulate the adsorption of Argon inside the model SBA-15 using Grand canonical Monte Carlo simulations. The adsorption isotherm from the model is in semi-quantitative agreement with that of an experimental SBA-15. The adsorption behavior of several.

Molecular Models for Templated Mesoporous Materials

Molecular Models for Templated Mesoporous Materials PDF Author: Supriyo Bhattacharya
Publisher:
ISBN:
Category :
Languages : en
Pages : 130

Book Description
Keywords: Mesostructured Cellular Foams, SBA-15, Mesoporous Materials, molecular simulation.

Dissertation Abstracts International

Dissertation Abstracts International PDF Author:
Publisher:
ISBN:
Category : Dissertations, Academic
Languages : en
Pages : 886

Book Description


Handbook of Porous Solids

Handbook of Porous Solids PDF Author: Ferdi Schüth
Publisher:
ISBN:
Category : Porous materials
Languages : en
Pages : 832

Book Description


Characterization of Porous Solids VI

Characterization of Porous Solids VI PDF Author:
Publisher: Elsevier
ISBN: 0080528910
Category : Technology & Engineering
Languages : en
Pages : 809

Book Description
This book contains 99 of the papers that were presented at the 6th in the series of Symposia on Characterization of Porous Solids held in Alicante, Spain, May 2002. Written by leading international specialists in the subject, the contributions represent an up-to-date and authoritative account of recent developments around the world in the major methods used to characterize porous solids. The book is a useful work of reference for anyone interested in characterizing porous solids, such as MCM-41 mesoporous materials, pillared clays, etc. Papers on pore structure determination using gas adsorption feature strongly, together with papers on small angle scattering methods, mercury porosimetry, microcalorimetry, scanning probe microscopies, and image analysis.

Adsorption and Diffusion

Adsorption and Diffusion PDF Author: Hellmut G. Karge
Publisher: Springer Science & Business Media
ISBN: 3540739661
Category : Science
Languages : en
Pages : 411

Book Description
"Molecular Sieves - Science and Technology" covers, in a comprehensive manner, the science and technology of zeolites and all related microporous and mesoporous materials. The contributions are grouped together topically in such a way that each volume deals with a specific sub-field. Volume 7 treats fundamentals and analyses of adsorption and diffusion in zeolites including single-file diffusion. Various methods of measuring adsorption and diffusion are described and discussed.

Chemical Engineering Progress

Chemical Engineering Progress PDF Author:
Publisher:
ISBN:
Category : Chemistry, Technical
Languages : en
Pages : 460

Book Description


Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density

Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density PDF Author: S. Lowell
Publisher: Springer Science & Business Media
ISBN: 1402023030
Category : Science
Languages : en
Pages : 365

Book Description
The growth of interest in newly developed porous materials has prompted the writing of this book for those who have the need to make meaningful measurements without the benefit of years of experience. One might consider this new book as the 4th edition of "Powder Surface Area and Porosity" (Lowell & Shields), but for this new edition we set out to incorporate recent developments in the understanding of fluids in many types of porous materials, not just powders. Based on this, we felt that it would be prudent to change the title to "Characterization of Porous Solids and Powders: Surface Area, Porosity and Density". This book gives a unique overview of principles associated with the characterization of solids with regard to their surface area, pore size, pore volume and density. It covers methods based on gas adsorption (both physi and chemisorption), mercury porosimetry and pycnometry. Not only are the theoretical and experimental basics of these techniques presented in detail but also, in light of the tremendous progress made in recent years in materials science and nanotechnology, the most recent developments are described. In particular, the application of classical theories and methods for pore size analysis are contrasted with the most advanced microscopic theories based on statistical mechanics (e.g. Density Functional Theory and Molecular Simulation). The characterization of heterogeneous catalysts is more prominent than in earlier editions; the sections on mercury porosimetry and particularly chemisorption have been updated and greatly expanded.

Materials for Carbon Capture

Materials for Carbon Capture PDF Author: De-en Jiang
Publisher: John Wiley & Sons
ISBN: 1119091179
Category : Science
Languages : en
Pages : 397

Book Description
Covers a wide range of advanced materials and technologies for CO2 capture As a frontier research area, carbon capture has been a major driving force behind many materials technologies. This book highlights the current state-of-the-art in materials for carbon capture, providing a comprehensive understanding of separations ranging from solid sorbents to liquid sorbents and membranes. Filled with diverse and unconventional topics throughout, it seeks to inspire students, as well as experts, to go beyond the novel materials highlighted and develop new materials with enhanced separations properties. Edited by leading authorities in the field, Materials for Carbon Capture offers in-depth chapters covering: CO2 Capture and Separation of Metal-Organic Frameworks; Porous Carbon Materials: Designed Synthesis and CO2 Capture; Porous Aromatic Frameworks for Carbon Dioxide Capture; and Virtual Screening of Materials for Carbon Capture. Other chapters look at Ultrathin Membranes for Gas Separation; Polymeric Membranes; Carbon Membranes for CO2 Separation; and Composite Materials for Carbon Captures. The book finishes with sections on Poly(amidoamine) Dendrimers for Carbon Capture and Ionic Liquids for Chemisorption of CO2 and Ionic Liquid-Based Membranes. A comprehensive overview and survey of the present status of materials and technologies for carbon capture Covers materials synthesis, gas separations, membrane fabrication, and CO2 removal to highlight recent progress in the materials and chemistry aspects of carbon capture Allows the reader to better understand the challenges and opportunities in carbon capture Edited by leading experts working on materials and membranes for carbon separation and capture Materials for Carbon Capture is an excellent book for advanced students of chemistry, materials science, chemical and energy engineering, and early career scientists who are interested in carbon capture. It will also be of great benefit to researchers in academia, national labs, research institutes, and industry working in the field of gas separations and carbon capture.

Clay-Polymer Nanocomposites

Clay-Polymer Nanocomposites PDF Author: Khouloud Jlassi
Publisher: Elsevier
ISBN: 0323461611
Category : Technology & Engineering
Languages : en
Pages : 548

Book Description
Clay–Polymer Nanocomposites is a complete summary of the existing knowledge on this topic, from the basic concepts of synthesis and design to their applications in timely topics such as high-performance composites, environment, and energy issues. This book covers many aspects of synthesis such as in- situ polymerization within the interlamellar spacing of the clays or by reaction of pristine or pre-modified clays with reactive polymers and prepolymers. Indeed, nanocomposites can be prepared at industrial scale by melt mixing. Regardless the synthesis method, much is said in this book about the importance of theclay pre-modification step, which is demonstrated to be effective, on many occasions, in obtaining exfoliated nanocomposites. Clay–Polymer Nanocomposites reports the background to numerous characterization methods including solid state NMR, neutron scattering, diffraction and vibrational techniques as well as surface analytical methods, namely XPS, inverse gas chromatography and nitrogen adsorption to probe surface composition, wetting and textural/structural properties. Although not described in dedicated chapters, numerous X-ray diffraction patterns of clay–polymer nanocomposites and reference materials are displayed to account for the effects of intercalation and exfoliations of layered aluminosilicates. Finally, multiscale molecular simulation protocols are presenting for predicting morphologies and properties of nanostructured polymer systems with industrial relevance. As far as applications are concerned, Clay–Polymer Nanocomposites examines structural composites such as clay–epoxy and clay–biopolymers, the use of clay–polymer nanocomposites as reactive nanocomposite fillers, catalytic clay-(conductive) polymers and similar nanocomposites for the uptake of hazardous compounds or for controlled drug release, antibacterial applications, energy storage, and more. The most comprehensive coverage of the state of the art in clay–polymer nanocomposites, from synthesis and design to opportunities and applications Covers the various methods of characterization of clay–polymer nanocomposites - including spectroscopy, thermal analyses, and X-ray diffraction Includes a discussion of a range of application areas, including biomedicine, energy storage, biofouling resistance, and more