Molecular Ecological Characterisation of High-latitude Bacterioplankton PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Molecular Ecological Characterisation of High-latitude Bacterioplankton PDF full book. Access full book title Molecular Ecological Characterisation of High-latitude Bacterioplankton by Taylor Priest. Download full books in PDF and EPUB format.

Molecular Ecological Characterisation of High-latitude Bacterioplankton

Molecular Ecological Characterisation of High-latitude Bacterioplankton PDF Author: Taylor Priest
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Arctic Ocean is undergoing irreversible perturbations as a result of accelerated climate warming. Of major significance is the expanding influence of Atlantic water that expedites sea-ice decline, alters stratification and vertical mixing of the water column and facilitates northward expansion of temperate biota. Our understanding on how these processes will impact biological communities is severely limited. The Fram Strait is the primary entry route for Atlantic water into the Arctic Ocean and exit point for polar water and sea-ice. With the presence of two major current systems combined with horizontal mixing processes, the Fram Strait is characterised by a longitudinal gradient of hydrographic regimes reflective of Arctic, mixed and Atlantic conditions. This provides an invaluable opportunity to study the ecology of microbes over an environmental gradient and under changing conditions. Furthermore, given its high-latitude position, it also facilitates investigations on how dramatic seasonal transformations in conditions, such as sea-ice cover and light availability, influence microbes in the context of water mass history. This thesis provides an ecological characterisation of microbial communities over temporal and spatial scales in the Fram Strait in an effort to address these topics. In Chapter II, we employed metagenomics from short- and long-read sequencing platforms to gain insights into microbial community composition across water masses in the Fram Strait. As that study incorporated the first PacBio HiFi (long-read) metagenomes from the marine environment, it was necessary to perform a methodological comparison. We show that using PacBio HiFi metagenomes, we are able to recover more metagenome-assembled genomes (MAGs) that, on average, are more complete, less fragmented and more frequently contain complete rRNA gene operons compared to using short-read metagenomes. This not only influenced our investigative toolkit throughout the remainder of this thesis but provides valuable data for future considerations on using long-read metagenomics in the study of marine microbial ecology. From the analysis conducted in Chapter II, we observed a flavobacterial clade that is commonly associated with coastal temperate ecosystems, the NS5 Marine Group, to be prominent in high-latitude waters. This motivated us to delve deeper into this group and understand their diversity and function. By combining cultivation, metagenomics, epifluorescence and transmission electron microscopy, we were able to delineate this group into four novel candidate genera and evidence distinctions in function and spatiotemporal dynamics at the species and genus level (Chapter III). In that study, we also presented the first pure isolate and complete genome for a member of the NS5 Marine Group. In Chapter IV, we performed the first high-resolution temporal analysis on microbial taxonomy and function in Arctic polar waters. Using a four-year 16S amplicon dataset and one annual cycle of PacBio HiFi metagenomes, we evidenced that Atlantic water influx and sea-ice cover had a profound impact on the composition and function of microbial communities. Based on their omnipresence irrespective of conditions, we also identified a small fraction of the community that likely represents the resident microbiome of the Fram Strait. Furthermore, we showed that a transition to low-ice and high Atlantic water influx shifted the community to one dominated by heterotrophic clades that are functionally linked to phytoplankton-derived organic matter. Our findings suggest that the continued expansion of Atlantic water into the Arctic Ocean will be reflected in a Biological Atlantification of the microbial community, with populations adapted to Arctic conditions exhibiting reduced ecological niche space. These changes will have implications for the future ecosystem functioning and the carbon cycle. In Chapter V of this thesis, we combined metagenomics and metatranscriptomics with analytical techniques to characterise the carbohydrate fraction of particulate organic matter and carbohydrate utilisation by microbes in the Atlantic waters of the Fram Strait during late summer. A high spatial heterogeneity was observed in both carbohydrates and their utilisation, which indicated patchiness in local productivity and a responsive microbial community. Carbohydrate utilisation was dominated by distinct microbial assemblages across sampling sites and consisted of populations making use of labile (communal) and more complex (specialist) substrates. We therein proposed that local biological and physical processes are important for continuing to shape the availability and utilisation of carbohydrates into the late summer. In an effort to clearly and concisely convey the main findings from this thesis in the context of its original aims, a detailed description on the current and future state of the Fram Strait and Arctic Ocean microbiome is provided in the discussion. In addition, insights and recommendations on how to apply long-read metagenomes to answer questions on microbial ecology is provided, given its fundamental importance for this thesis and its relative infancy in environmental research applications. Lastly, owing to it representing an underlying theme throughout much of the research conducted, a discussion on the ecological niche concept is provided along with a proposal for its redefinition in marine microbial ecology.

Molecular Ecological Characterisation of High-latitude Bacterioplankton

Molecular Ecological Characterisation of High-latitude Bacterioplankton PDF Author: Taylor Priest
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The Arctic Ocean is undergoing irreversible perturbations as a result of accelerated climate warming. Of major significance is the expanding influence of Atlantic water that expedites sea-ice decline, alters stratification and vertical mixing of the water column and facilitates northward expansion of temperate biota. Our understanding on how these processes will impact biological communities is severely limited. The Fram Strait is the primary entry route for Atlantic water into the Arctic Ocean and exit point for polar water and sea-ice. With the presence of two major current systems combined with horizontal mixing processes, the Fram Strait is characterised by a longitudinal gradient of hydrographic regimes reflective of Arctic, mixed and Atlantic conditions. This provides an invaluable opportunity to study the ecology of microbes over an environmental gradient and under changing conditions. Furthermore, given its high-latitude position, it also facilitates investigations on how dramatic seasonal transformations in conditions, such as sea-ice cover and light availability, influence microbes in the context of water mass history. This thesis provides an ecological characterisation of microbial communities over temporal and spatial scales in the Fram Strait in an effort to address these topics. In Chapter II, we employed metagenomics from short- and long-read sequencing platforms to gain insights into microbial community composition across water masses in the Fram Strait. As that study incorporated the first PacBio HiFi (long-read) metagenomes from the marine environment, it was necessary to perform a methodological comparison. We show that using PacBio HiFi metagenomes, we are able to recover more metagenome-assembled genomes (MAGs) that, on average, are more complete, less fragmented and more frequently contain complete rRNA gene operons compared to using short-read metagenomes. This not only influenced our investigative toolkit throughout the remainder of this thesis but provides valuable data for future considerations on using long-read metagenomics in the study of marine microbial ecology. From the analysis conducted in Chapter II, we observed a flavobacterial clade that is commonly associated with coastal temperate ecosystems, the NS5 Marine Group, to be prominent in high-latitude waters. This motivated us to delve deeper into this group and understand their diversity and function. By combining cultivation, metagenomics, epifluorescence and transmission electron microscopy, we were able to delineate this group into four novel candidate genera and evidence distinctions in function and spatiotemporal dynamics at the species and genus level (Chapter III). In that study, we also presented the first pure isolate and complete genome for a member of the NS5 Marine Group. In Chapter IV, we performed the first high-resolution temporal analysis on microbial taxonomy and function in Arctic polar waters. Using a four-year 16S amplicon dataset and one annual cycle of PacBio HiFi metagenomes, we evidenced that Atlantic water influx and sea-ice cover had a profound impact on the composition and function of microbial communities. Based on their omnipresence irrespective of conditions, we also identified a small fraction of the community that likely represents the resident microbiome of the Fram Strait. Furthermore, we showed that a transition to low-ice and high Atlantic water influx shifted the community to one dominated by heterotrophic clades that are functionally linked to phytoplankton-derived organic matter. Our findings suggest that the continued expansion of Atlantic water into the Arctic Ocean will be reflected in a Biological Atlantification of the microbial community, with populations adapted to Arctic conditions exhibiting reduced ecological niche space. These changes will have implications for the future ecosystem functioning and the carbon cycle. In Chapter V of this thesis, we combined metagenomics and metatranscriptomics with analytical techniques to characterise the carbohydrate fraction of particulate organic matter and carbohydrate utilisation by microbes in the Atlantic waters of the Fram Strait during late summer. A high spatial heterogeneity was observed in both carbohydrates and their utilisation, which indicated patchiness in local productivity and a responsive microbial community. Carbohydrate utilisation was dominated by distinct microbial assemblages across sampling sites and consisted of populations making use of labile (communal) and more complex (specialist) substrates. We therein proposed that local biological and physical processes are important for continuing to shape the availability and utilisation of carbohydrates into the late summer. In an effort to clearly and concisely convey the main findings from this thesis in the context of its original aims, a detailed description on the current and future state of the Fram Strait and Arctic Ocean microbiome is provided in the discussion. In addition, insights and recommendations on how to apply long-read metagenomes to answer questions on microbial ecology is provided, given its fundamental importance for this thesis and its relative infancy in environmental research applications. Lastly, owing to it representing an underlying theme throughout much of the research conducted, a discussion on the ecological niche concept is provided along with a proposal for its redefinition in marine microbial ecology.

Diversity and Community Composition of Active Microbial Communities in Southern High Latitude Ecosystems

Diversity and Community Composition of Active Microbial Communities in Southern High Latitude Ecosystems PDF Author: Claudia Maturana Martínez
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Southern high latitudes marine ecosystems (HLME) are highly sensitive to climate change, impacting physical, chemical, and biological processes, however, their prominent role in climate modulation and water masses circulation, contrast with the relatively low number of studies on their functioning. Relatively few studies on bacterioplankton community structure have been reported for southern Chilean Patagonia and for the Southern Ocean (SO) on a large scale, and none have targeted the active fraction of the bacterioplankton community. We used 16S rRNA sequencing to analyze and describe the community structure of the active bacterioplankton communities in southern HLME. The main objective of this thesis was to characterize de diversity and abundance of bacterioplankton communities along environmental and geographical gradients in southern HLME. First, we investigated whether nearby fjords of the southern Chilean Patagonia, with similar climate and location but different freshwater inflows, had different communities. Second, we investigated interannual changes experienced by the bacterioplankton community of the Yendegaia fjord. Third, we examined the large-scale spatial structure of the bacterioplankton community along a transect across the Pacific sector of the SO. Ours results show that southern polar bacterioplanktonic communities are structured according to physical, chemical, and biological parameters characteristic of the area. In addition, we also demonstrated that changes in environmental, spatial, and temporal parameters affect the structure of bacterioplanktonic communities. Thus, highlighting the importance of microbial ecology studies in areas sensitive to global climate change such as southern HLME.

Molecular Diversity of Environmental Prokaryotes

Molecular Diversity of Environmental Prokaryotes PDF Author: Thiago Bruce Rodrigues
Publisher: CRC Press
ISBN: 1482233231
Category : Medical
Languages : en
Pages : 398

Book Description
This book correlates the vast genetic diversity associated with environmental samples and still underexploited potential for the development of biotechnology products. The book points out the potential of different types of environmental samples. It presents the main characteristics of microbial diversity, the main approaches used for molecular characterization of the diversity, and practical examples of application of the exploration of the microbial diversity. It presents a not-yet-explored structure for discussing the main topics related to molecular biology of environmental prokaryotes and their biotechnological applications.

Responses of Marine Microbes to Multiple Environmental Drivers of Global Change: the Interplay of Abiotic and Biotic Factors

Responses of Marine Microbes to Multiple Environmental Drivers of Global Change: the Interplay of Abiotic and Biotic Factors PDF Author: Yuanyuan Feng
Publisher: Frontiers Media SA
ISBN: 2832502660
Category : Science
Languages : en
Pages : 317

Book Description


High Mountain Conservation in a Changing World

High Mountain Conservation in a Changing World PDF Author: Jordi Catalan
Publisher: Springer
ISBN: 3319559826
Category : Nature
Languages : en
Pages : 413

Book Description
This book provides case studies and general views of the main processes involved in the ecosystem shifts occurring in the high mountains and analyses the implications for nature conservation. Case studies from the Pyrenees are preponderant, with a comprehensive set of mountain ranges surrounded by highly populated lowland areas also being considered. The introductory and closing chapters will summarise the main challenges that nature conservation may face in mountain areas under the environmental shifting conditions. Further chapters put forward approaches from environmental geography, functional ecology, biogeography, and paleoenvironmental reconstructions. Organisms from microbes to large carnivores, and ecosystems from lakes to forest will be considered. This interdisciplinary book will appeal to researchers in mountain ecosystems, students and nature professionals. This book is open access under a CC BY license.

Aquatic Sciences in the Tropics

Aquatic Sciences in the Tropics PDF Author: B. B. Jana
Publisher: CRC Press
ISBN: 1040267343
Category : Technology & Engineering
Languages : en
Pages : 502

Book Description
The anatomy of water, water as a substance, water as a medium, the principles of the hydrologic cycle, the economics of water, and challenges are all covered in the first chapter of this book. The horizon of the tropical world, the environment, particularly the tropical environment, aquatic biome, tropical aquatic bionetwork, concept of biosphere, and tropical limnology are all covered in the second chapter. The third chapter covers the following topics: the origins of lakes, general lake classification, tropical lakes, lake morphometry, morpho-edaphic index, trophic status index of lakes, wetlands, and mangroves in tropical regions. The lotic environment is the main topic of the fourth chapter, which also covers the idea of stream order, the differences between rivers and streams, the river continuum, physical, chemical, and biological characteristics, and adaptations of fish found in hill streams. Chapter five covers the prokaryota, cyanobacteria, freshwater biota, and water-adapted organisms. The sixth chapter focuses on the algal communities Xanthophyceae, Euglenophyceae, Bacillariophyceae, Chrysophyceae, Phaeophyceae (brown algae), and Chlorophyceae. The seventh and last chapter covers the following topics: Protozoa, Porifera, Rotifera, Coelenterata, Annelida, Arthropoda, Crustacea, Aquatic Insects, Mollusca, Echinodermata, and Brachiopodaa.

Biogeochemistry of Marine Dissolved Organic Matter

Biogeochemistry of Marine Dissolved Organic Matter PDF Author: Dennis A. Hansell
Publisher: Academic Press
ISBN: 0124071538
Category : Science
Languages : en
Pages : 712

Book Description
Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. Features up-to-date knowledge of DOM, including five new chapters The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea Includes chapters that address inputs from freshwater terrestrial DOM

Microbial ecology and ecosystems from a Southern perspective

Microbial ecology and ecosystems from a Southern perspective PDF Author: Veronica Molina
Publisher: Frontiers Media SA
ISBN: 2832510892
Category : Science
Languages : en
Pages : 289

Book Description


Philosophical Transactions of the Royal Society of London

Philosophical Transactions of the Royal Society of London PDF Author:
Publisher:
ISBN:
Category : Biology
Languages : en
Pages : 480

Book Description


Microbial Ecosystems in Central Andes Extreme Environments

Microbial Ecosystems in Central Andes Extreme Environments PDF Author: María Eugenia Farías
Publisher: Springer Nature
ISBN: 3030361926
Category : Science
Languages : en
Pages : 298

Book Description
The Central Andean Altiplane represents a unique extreme environment due to its high altitude, closed basins that modulate the salt pans and saline wetlands surrounded by deserts, as well as the considerable influence of volcanic activity. UV radiation, arsenic content, high salinity, alkalinity and low dissolved oxygen levels, together with extreme daily temperature fluctuations and oligotrophic conditions, shape an environment that resembles the early Earth and, even more, extraterrestrial conditions. By developing simple biofilms stratified microbial mats or complex microbialites, extreme microbial ecosystems, colonize and thrived in different environments like salt flats, wetlands, lakes volcano vents, geysers and deserts. This book presents our current understanding of these amazing ecosystems, providing a basis for their protection and sustainable utilization. The main audience for this book included researchers and graduate students as well as professionals working in the government, mining industry and similar activities.