Molecular Beam Epitaxy of Topological Insulator Thin Films PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Molecular Beam Epitaxy of Topological Insulator Thin Films PDF full book. Access full book title Molecular Beam Epitaxy of Topological Insulator Thin Films by Jörn Kampmeier. Download full books in PDF and EPUB format.

Molecular Beam Epitaxy of Topological Insulator Thin Films

Molecular Beam Epitaxy of Topological Insulator Thin Films PDF Author: Jörn Kampmeier
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Molecular Beam Epitaxy of Topological Insulator Thin Films

Molecular Beam Epitaxy of Topological Insulator Thin Films PDF Author: Jörn Kampmeier
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description


Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films

Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂se₃ Thin Films PDF Author: Xin Guo
Publisher: Open Dissertation Press
ISBN: 9781361331743
Category :
Languages : en
Pages :

Book Description
This dissertation, "Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi₂Se₃ Thin Films" by Xin, Guo, 郭欣, was obtained from The University of Hong Kong (Pokfulam, Hong Kong) and is being sold pursuant to Creative Commons: Attribution 3.0 Hong Kong License. The content of this dissertation has not been altered in any way. We have altered the formatting in order to facilitate the ease of printing and reading of the dissertation. All rights not granted by the above license are retained by the author. Abstract: In this thesis, molecular-beam epitaxy (MBE) of three-dimensional (3D) topological insulator (TI) Bi_2 Se_3 thin films on different substrates is presented. The substrates experimented include InP(111)A, GaAs(111)A, InP(001) and GaAs(001). Multiple characterization techniques are employed to investigate the film's structural, morphological and electrical properties. To facilitate growth of high quality epitaxial Bi_2 Se_3, thermal treatment of the substrate surfaceturnsout to be crucial for both InP(001) and InP(111). On the other hand, for high-index epitaxial Bi_2 Se_3 growth on GaAs(001), the In_2 Se_3 buffer layer has to be employed. Twin defects in epitaxial Bi_2 Se_3 (111) thin films on hexagonal substrates have been found inevitable in the past. In this study, however, such defects are successfully suppressed on InP(111)A and GaAs(111)Asubstrates, as evidenced in electron diffraction and morphological measurements. The prerequisite for the twin-free Bi_2 Se_3 (111) epitaxy appears to be the step-flow growth mode on the purposely treated stepped substrate surfaces, where deposits incorporate in film at step edges. The lattice of InP or GaAs substrate then plays a guiding role for epitaxial Bi_2 Se_3. Twin suppression is also seen to occur for growth on vicinal and islanded InP(111)A substrate, where a high density of steps inherently exists on surface. Transport studies on such single-domain Bi2Se3epifilms show superior electronic characteristics when compared to those of twinned films grown on, e.g., Si(111). The Shubnikov-de Haas (SdH)oscillations due to bulk state Landau quantization are observed in the magnetoresistance (MR) measurements of Bi_2 Se_3films grown on InP(111)A. So far, a majority of experimental work of 3D TIs is exclusively on the (111) surfaces, primarily due to the ease to obtain such a surface by cleavage or by growth. On the other hand, for strong topological insulator, nontrivial surface states are expected to exist on other surfaces as well, which remain to be experimentally confirmed. In this study, a high-index epitaxial Bi_2 Se_3is achieved by epitaxial growth on facetted InP(001) substrate. The latter is obtained by a cautious thermal treatment of the substrate wafer under Se flux, where the rhombohedral In_2 Se_3buffer layer forms, facilitating the growth of Bi_2 Se_3 (221) film.Such a high index Bi_2 Se_3 film is evidenced by low-energy electron diffraction (LEED), reflection high-energy electron diffraction (RHEED) and x-ray diffraction (XRD) measurements. The unique strapped morphology on Bi_2 Se_3 (221) surface is revealed by scanning tunneling microscopy (STM). Angle-resolved photoemission spectroscopy (ARPES) measurements unambiguously show the Dirac surface states elucidating the 3D topological nature ofBi_2 Se_3. Significantly, constant energy plot shows an anisotropic Fermi surface, being ofellipticalshape, which qualitatively agrees with the theoretical calculation. Transport studies of such Bi_2 Se_3(221) films reveal the ratio of conductivities along directions parallel and transverse the van der Waals (vdW) gaps to be as high as 4.4. DOI: 10.5353/th_b5153683 Subjects: Molecular beam epitaxy Thin films

Topological Insulator and Magnetically Doped Topological Insulator Thin Films by Molecular Beam Epitaxy

Topological Insulator and Magnetically Doped Topological Insulator Thin Films by Molecular Beam Epitaxy PDF Author: Shuang Li
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Searching for energy dissipation-less systems has become increasingly important for low power electronic devices. Topological insulators, a new topological state of quantum matter, have recently been proposed as an emerging material for use in low power electronics, because of the unique transport along its topologically protected edge/surface states. In addition, it has been predicted that the incorporation of magnetic elements into topological insulators could lead to the quantum anomalous Hall state, which is a truly dissipation-less system. However, the material quality of topological insulator thin films remains as a major stumbling block for exploring the novel physics of topological insulators and their proposed applications. In the first part of this thesis, I will first describe an advanced thin film deposition technique, molecular beam epitaxy (MBE) and the mini-MBE system we designed and built for topological insulator thin film growth. Then I will briefly illustrate some basic principles and sample preparation methods for a variety of characterization techniques we used for the material property investigation. In the second part of this thesis, I will present the growth and characterization of topological insulator bismuth telluride thin films grown by a two-step MBE process developed as part of this research. By optimizing the growth recipe and particularly developing the two-step growth method, defect densities were significantly reduced and higher crystal and surface quality bismuth telluride thin films were achieved. The existence of a topological surface state on our bismuth telluride thin films was also confirmed. The Fermi level of our bismuth telluride thin film was tuned to very close to the bulk gap region. The successful growth of centimeter-sized, uniform, high quality topological insulator thin films provides an excellent platform for both fundamental studies of the properties of topological insulators and fabrications of mesoscopic devices. Finally, I will report on the first successful growth of gadolinium substituted bismuth telluride thin films with high Gd concentrations by MBE. We systematically investigated the crystal structure, band structure, magnetic, and electronic properties of gadolinium substituted bismuth telluride thin films. The topological surface state was found to remain intact by Gd substitution into bismuth telluride. Although ferromagnetic behavior in gadolinium substituted bismuth telluride thin films was not observed above 2K by both magnetic and magneto-transport measurements, gadolinium substituted bismuth telluride thin films were found to have a Curie susceptibility due to the paramagnetic Gd ions with an atomic magnetic moment of 6.93 Bohr magneton per Gd ion, which suggests that it is possible to realize dissipation-less transport with a small external magnetic field or with a ferromagnetic layer on top of gadolinium substituted bismuth telluride thin films.

Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi2Se3 Thin Films

Molecular Beam Epitaxy of Three Dimensional Topological Insulator Bi2Se3 Thin Films PDF Author: 郭欣
Publisher:
ISBN:
Category : Molecular beam epitaxy
Languages : en
Pages : 0

Book Description


Molecular Beam Epitaxy of Topological Insulator Bi2Se3

Molecular Beam Epitaxy of Topological Insulator Bi2Se3 PDF Author: Yuxuan Chen
Publisher:
ISBN:
Category :
Languages : en
Pages : 32

Book Description
In this thesis, I show my effort in growing atomically flat Bi2Se3 thin films using molecular beam epitaxy (MBE) method. Bi2Se3 is a kind of topological insulator, whose exotic surface states have been found in the samples that I grew.

Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films

Transport Studies of the Electrical, Magnetic and Thermoelectric properties of Topological Insulator Thin Films PDF Author: Jinsong Zhang
Publisher: Springer
ISBN: 3662499274
Category : Science
Languages : en
Pages : 128

Book Description
This book presents the transport studies of topological insulator thin films grown by molecular beam epitaxy. Through band structure engineering, the ideal topological insulators, (Bi1−xSbx)2Te3 ternary alloys, are successfully fabricated, which possess truly insulating bulk and tunable conducting surface states. Further transport measurements on these ternary alloys reveal a disentanglement between the magnetoelectric and thermoelectric properties. In magnetically doped topological insulators, the fascinating quantum anomalous Hall effect was experimentally observed for the first time. Moreover, the topology-driven magnetic quantum phase transition was Systematically controlled by varying the strength of the spin-orbital coupling. Readers will not only benefit from the description of the technique of transport measurements, but will also be inspired by the understanding of topological insulators.

Materials and Physical Properties of Topological Insulator Bi2Te3 Thin Films by Molecular Beam Epitaxy

Materials and Physical Properties of Topological Insulator Bi2Te3 Thin Films by Molecular Beam Epitaxy PDF Author: 林柏皓
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Molecular Beam Epitaxial Growth of Topological Insulators Bi2Se3 Thin Films

Molecular Beam Epitaxial Growth of Topological Insulators Bi2Se3 Thin Films PDF Author: Xufeng Kou
Publisher:
ISBN:
Category :
Languages : en
Pages : 120

Book Description


Topological Insulators

Topological Insulators PDF Author: Ke He
Publisher: Elsevier Inc. Chapters
ISBN: 0128086904
Category : Science
Languages : en
Pages : 36

Book Description
Material is a key to the experimental observation of novel quantum phenomena predicted in topological insulators. In this chapter, we review the recent theoretic and experimental efforts devoted to improving the existing topological insulator materials and exploring new topological insulators. The emphasis is on growth and engineering of the properties of topological insulator thin films by molecular beam epitaxy for realization of various quantum effects.

Molecular Beam Epitaxy

Molecular Beam Epitaxy PDF Author: Mohamed Henini
Publisher: Elsevier
ISBN: 0128121378
Category : Science
Languages : en
Pages : 790

Book Description
Molecular Beam Epitaxy (MBE): From Research to Mass Production, Second Edition, provides a comprehensive overview of the latest MBE research and applications in epitaxial growth, along with a detailed discussion and 'how to' on processing molecular or atomic beams that occur on the surface of a heated crystalline substrate in a vacuum. The techniques addressed in the book can be deployed wherever precise thin-film devices with enhanced and unique properties for computing, optics or photonics are required. It includes new semiconductor materials, new device structures that are commercially available, and many that are at the advanced research stage. This second edition covers the advances made by MBE, both in research and in the mass production of electronic and optoelectronic devices. Enhancements include new chapters on MBE growth of 2D materials, Si-Ge materials, AIN and GaN materials, and hybrid ferromagnet and semiconductor structures. - Condenses the fundamental science of MBE into a modern reference, speeding up literature review - Discusses new materials, novel applications and new device structures, grounding current commercial applications with modern understanding in industry and research - Includes coverage of MBE as mass production epitaxial technology and how it enhances processing efficiency and throughput for the semiconductor industry and nanostructured semiconductor materials research community