Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition PDF full book. Access full book title Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition by Patricia Melin. Download full books in PDF and EPUB format.

Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition PDF Author: Patricia Melin
Publisher: Springer Science & Business Media
ISBN: 3642241387
Category : Computers
Languages : en
Pages : 216

Book Description
This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural networks with the aim of designing intelligent systems for complex pattern recognition problems, including iris, ear, face and voice recognition. The third part contains chapters with the theme of evolutionary optimization of type-2 fuzzy systems and modular neural networks in the area of intelligent pattern recognition, which includes the application of genetic algorithms for obtaining optimal type-2 fuzzy integration systems and ideal neural network architectures for solving problems in this area.

Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition

Modular Neural Networks and Type-2 Fuzzy Systems for Pattern Recognition PDF Author: Patricia Melin
Publisher: Springer Science & Business Media
ISBN: 3642241387
Category : Computers
Languages : en
Pages : 216

Book Description
This book describes hybrid intelligent systems using type-2 fuzzy logic and modular neural networks for pattern recognition applications. Hybrid intelligent systems combine several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful pattern recognition systems. Type-2 fuzzy logic is an extension of traditional type-1 fuzzy logic that enables managing higher levels of uncertainty in complex real world problems, which are of particular importance in the area of pattern recognition. The book is organized in three main parts, each containing a group of chapters built around a similar subject. The first part consists of chapters with the main theme of theory and design algorithms, which are basically chapters that propose new models and concepts, which are the basis for achieving intelligent pattern recognition. The second part contains chapters with the main theme of using type-2 fuzzy models and modular neural networks with the aim of designing intelligent systems for complex pattern recognition problems, including iris, ear, face and voice recognition. The third part contains chapters with the theme of evolutionary optimization of type-2 fuzzy systems and modular neural networks in the area of intelligent pattern recognition, which includes the application of genetic algorithms for obtaining optimal type-2 fuzzy integration systems and ideal neural network architectures for solving problems in this area.

Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition

Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition PDF Author: Patricia Melin
Publisher: Springer Science & Business Media
ISBN: 3642045154
Category : Computers
Languages : en
Pages : 258

Book Description
Bio-Inspired Hybrid Intelligent Systems for Image Analysis and Pattern Recognition comprises papers on diverse aspects of bio-inspired models, soft computing and hybrid intelligent systems. The articles are divided into four main parts. The first one consists of papers that propose new fuzzy and bio-inspired models to solve general problems. The second part deals with the main theme of modular neural networks in pattern recognition, which are basically papers using bio-inspired techniques. The third part contains papers that apply hybrid intelligent systems to the problem of time series analysis and prediction, while the fourth one shows papers dealing with bio-inspired models in optimization and robotics applications. An edited book in which both theoretical and application aspects are covered.

Recent Advances on Hybrid Intelligent Systems

Recent Advances on Hybrid Intelligent Systems PDF Author: Oscar Castillo
Publisher: Springer
ISBN: 3642330215
Category : Technology & Engineering
Languages : en
Pages : 558

Book Description
This book presents recent advances on hybrid intelligent systems using soft computing techniques for intelligent control and robotics, pattern recognition, time series prediction and optimization of complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain groups of papers around a similar subject. The first part consists of papers with the main theme of hybrid intelligent systems for control and robotics, which are basically state of the art papers that propose new models and concepts, which can be the basis for achieving intelligent control and mobile robotics. The second part contains papers with the main theme of hybrid intelligent systems for pattern recognition and time series prediction, which are basically papers using nature-inspired techniques, like evolutionary algorithms, fuzzy logic and neural networks, for achieving efficient pattern recognition or time series prediction. The third part contains papers with the theme of bio-inspired and genetic optimization methods, which basically consider the proposal of new methods and applications of bio-inspired optimization to solve complex optimization of real problems. The fourth part contains papers that deal with the application of intelligent optimization techniques in real world problems in scheduling, planning and manufacturing. The fifth part contains papers with the theme of evolutionary methods and intelligent computing, which are papers considering soft computing methods for applications related to diverse areas, such as natural language processing, recommending systems and optimization.

Type-2 Fuzzy Logic: Theory and Applications

Type-2 Fuzzy Logic: Theory and Applications PDF Author: Oscar Castillo
Publisher: Springer Science & Business Media
ISBN: 3540762833
Category : Mathematics
Languages : en
Pages : 252

Book Description
This book describes new methods for building intelligent systems using type-2 fuzzy logic and soft computing (SC) techniques. The authors extend the use of fuzzy logic to a higher order, which is called type-2 fuzzy logic. Combining type-2 fuzzy logic with traditional SC techniques, we can build powerful hybrid intelligent systems that can use the advantages that each technique offers. This book is intended to be a major reference tool and can be used as a textbook.

Recent Advances in Interval Type-2 Fuzzy Systems

Recent Advances in Interval Type-2 Fuzzy Systems PDF Author: Oscar Castillo
Publisher: Springer Science & Business Media
ISBN: 3642289568
Category : Technology & Engineering
Languages : en
Pages : 93

Book Description
This book reviews current state of the art methods for building intelligent systems using type-2 fuzzy logic and bio-inspired optimization techniques. Combining type-2 fuzzy logic with optimization algorithms, powerful hybrid intelligent systems have been built using the advantages that each technique offers. This book is intended to be a reference for scientists and engineers interested in applying type-2 fuzzy logic for solving problems in pattern recognition, intelligent control, intelligent manufacturing, robotics and automation. This book can also be used as a reference for graduate courses like the following: soft computing, intelligent pattern recognition, computer vision, applied artificial intelligence, and similar ones. We consider that this book can also be used to get novel ideas for new lines of re-search, or to continue the lines of research proposed by the authors.

Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing

Hybrid Intelligent Systems for Pattern Recognition Using Soft Computing PDF Author: Patricia Melin
Publisher: Springer Science & Business Media
ISBN: 9783540241218
Category : Computers
Languages : en
Pages : 296

Book Description
This monograph describes new methods for intelligent pattern recognition using soft computing techniques including neural networks, fuzzy logic, and genetic algorithms. Hybrid intelligent systems that combine several soft computing techniques are needed due to the complexity of pattern recognition problems. Hybrid intelligent systems can have different architectures, which have an impact on the efficiency and accuracy of pattern recognition systems, to achieve the ultimate goal of pattern recognition. This book also shows results of the application of hybrid intelligent systems to real-world problems of face, fingerprint, and voice recognition. This monograph is intended to be a major reference for scientists and engineers applying new computational and mathematical tools to intelligent pattern recognition and can be also used as a textbook for graduate courses in soft computing, intelligent pattern recognition, computer vision, or applied artificial intelligence.

Recent Advances on Hybrid Approaches for Designing Intelligent Systems

Recent Advances on Hybrid Approaches for Designing Intelligent Systems PDF Author: Oscar Castillo
Publisher: Springer
ISBN: 3319051709
Category : Technology & Engineering
Languages : en
Pages : 702

Book Description
This book describes recent advances on hybrid intelligent systems using soft computing techniques for diverse areas of application, such as intelligent control and robotics, pattern recognition, time series prediction and optimization complex problems. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks and bio-inspired optimization algorithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of type-2 fuzzy logic, which basically consists of papers that propose new models and applications for type-2 fuzzy systems. The second part contains papers with the main theme of bio-inspired optimization algorithms, which are basically papers using nature-inspired techniques to achieve optimization of complex optimization problems in diverse areas of application. The third part contains papers that deal with new models and applications of neural networks in real world problems. The fourth part contains papers with the theme of intelligent optimization methods, which basically consider the proposal of new methods of optimization to solve complex real world optimization problems. The fifth part contains papers with the theme of evolutionary methods and intelligent computing, which are papers considering soft computing methods for applications related to diverse areas, such as natural language processing, recommending systems and optimization.

MICAI 2009: Advances in Artificial Intelligence

MICAI 2009: Advances in Artificial Intelligence PDF Author: Arturo Hernández Aguirre
Publisher: Springer Science & Business Media
ISBN: 3642052576
Category : Computers
Languages : en
Pages : 759

Book Description
This book constitutes the refereed proceedings of the 8th Mexican International Conference on Artificial Intelligence, MICAI 2009, held in Guanajuato, Mexico, in November 2009. The 63 revised full papers presented together with one invited talk were carefully reviewed and selected from 215 submissions. The papers are organized in topical sections on logic and reasoning, ontologies, knowledge management and knowledge-based systems, uncertainty and probabilistic reasoning, natural language processing, data mining, machine learning, pattern recognition, computer vision and image processing, robotics, planning and scheduling, fuzzy logic, neural networks, intelligent tutoring systems, bioinformatics and medical applications, hybrid intelligent systems and evolutionary algorithms.

Soft Computing for Hybrid Intelligent Systems

Soft Computing for Hybrid Intelligent Systems PDF Author: Oscar Castillo
Publisher: Springer
ISBN: 354070812X
Category : Computers
Languages : en
Pages : 440

Book Description
We describe in this book, new methods and applications of hybrid intelligent systems using soft computing techniques. Soft Computing (SC) consists of several intelligent computing paradigms, including fuzzy logic, neural networks, and evolutionary al- rithms, which can be used to produce powerful hybrid intelligent systems. The book is organized in five main parts, which contain a group of papers around a similar subject. The first part consists of papers with the main theme of intelligent control, which are basically papers that use hybrid systems to solve particular problems of control. The second part contains papers with the main theme of pattern recognition, which are basically papers using soft computing techniques for achieving pattern recognition in different applications. The third part contains papers with the themes of intelligent agents and social systems, which are papers that apply the ideas of agents and social behavior to solve real-world problems. The fourth part contains papers that deal with the hardware implementation of intelligent systems for solving particular problems. The fifth part contains papers that deal with modeling, simulation and optimization for real-world applications.

Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications

Fuzzy Logic Augmentation of Neural and Optimization Algorithms: Theoretical Aspects and Real Applications PDF Author: Oscar Castillo
Publisher: Springer
ISBN: 3319710087
Category : Technology & Engineering
Languages : en
Pages : 535

Book Description
This book comprises papers on diverse aspects of fuzzy logic, neural networks, and nature-inspired optimization meta-heuristics and their application in various areas such as intelligent control and robotics, pattern recognition, medical diagnosis, time series prediction and optimization of complex problems. The book is organized into seven main parts, each with a collection of papers on a similar subject. The first part presents new concepts and algorithms based on type-2 fuzzy logic for dynamic parameter adaptation in meta-heuristics. The second part discusses network theory and applications, and includes papers describing applications of neural networks in diverse areas, such as time series prediction and pattern recognition. The third part addresses the theory and practice of meta-heuristics in different areas of application, while the fourth part describes diverse fuzzy logic applications in the control area, which can be considered as intelligent controllers. The next two parts explore applications in areas, such as time series prediction, and pattern recognition and new optimization and evolutionary algorithms and their applications respectively. Lastly, the seventh part addresses the design and application of different hybrid intelligent systems.