Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results PDF full book. Access full book title Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results by . Download full books in PDF and EPUB format.

Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results

Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results

Modular Caustic-Side Solvent Extraction Unit (MCU) Improved Solvent Quality and Processing Results PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process- 15495

Next Generation Solvent Performance in the Modular Caustic Side Solvent Extraction Process- 15495 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Changes to the Modular Caustic Side Solvent Extraction Unit (MCU) flow-sheet were implemented in the facility. Implementation included changing the scrub and strip chemicals and concentrations, modifying the O/A ratios for the strip, scrub, and extraction contactor banks, and blending the current BoBCalixC6 extractant based solvent in MCU with clean MaxCalix extractant based solvent. During the successful demonstration period, the MCU process was subject to rigorous oversight to ensure hydraulic stability and chemical/radionuclide analysis of the key process tanks (caustic wash tank, solvent hold tank, strip effluent hold tank, and decontaminated salt solution hold tank) to evaluate solvent carryover to downstream facilities and the effectiveness of cesium removal from the liquid salt waste. Results indicated the extraction of cesium was significantly more effective with an average Decontamination Factor (DF) of 1,129 (range was 107 to 1,824) and that stripping was effective. The contactor hydraulic performance was stable and satisfactory, as indicated by contactor vibration, contactor rotational speed, and flow stability; all of which remained at or near target values. Furthermore, the Solvent Hold Tank (SHT) level and specific gravity was as expected, indicating that solvent integrity and organic hydraulic stability were maintained. The coalescer performances were in the range of processing results under the BOBCalixC6 flow sheet, indicating negligible adverse impact of NGS deployment. After the Demonstration period, MCU began processing via routine operations. Results to date reiterate the enhanced cesium extraction and stripping capability of the Next Generation Solvent (NGS) flow sheet. This paper presents process performance results of the NGS Demonstration and continued operations of MCU utilizing the blended BobCalixC6-MaxCalix solvent under the NGS flowsheet.

Results of the Extraction-Scrub-Strip Testing Using an Improved Solvent Formulation and Salt Waste Processing Facility Simulated Waste

Results of the Extraction-Scrub-Strip Testing Using an Improved Solvent Formulation and Salt Waste Processing Facility Simulated Waste PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent - also known as the next generation solvent (NGS) - for deployment at the Savannah River Site to remove cesium from High Level Waste. The technical effort is a collaborative effort between Oak Ridge National Laboratory (ORNL) and Savannah River National Laboratory (SRNL). As part of the program, the Savannah River National Laboratory (SRNL) has performed a number of Extraction-Scrub-Strip (ESS) tests. These batch contact tests serve as first indicators of the cesium mass transfer solvent performance with actual or simulated waste. The test detailed in this report used simulated Tank 49H material, with the addition of extra potassium. The potassium was added at 1677 mg/L, the maximum projected (i.e., a worst case feed scenario) value for the Salt Waste Processing Facility (SWPF). The results of the test gave favorable results given that the potassium concentration was elevated (1677 mg/L compared to the current 513 mg/L). The cesium distribution value, DCs, for extraction was 57.1. As a comparison, a typical D{sub Cs} in an ESS test, using the baseline solvent formulation and the typical waste feed, is ≈15. The Modular Caustic Side Solvent Extraction Unit (MCU) uses the Caustic-Side Solvent Extraction (CSSX) process to remove cesium (Cs) from alkaline waste. This process involves the use of an organic extractant, BoBCalixC6, in an organic matrix to selectively remove cesium from the caustic waste. The organic solvent mixture flows counter-current to the caustic aqueous waste stream within centrifugal contactors. After extracting the cesium, the loaded solvent is stripped of cesium by contact with dilute nitric acid and the cesium concentrate is transferred to the Defense Waste Processing Facility (DWPF), while the organic solvent is cleaned and recycled for further use. The Salt Waste Processing Facility (SWPF), under construction, will use the same process chemistry. The Office of Waste Processing (EM-31) expressed an interest in investigating the further optimization of the organic solvent by replacing the BoBCalixC6 extractant with a more efficient extractant. This replacement should yield dividends in improving cesium removal from the caustic waste stream, and in the rate at which the caustic waste can be processed. To that end, EM-31 provided funding for both the Savannah River National Laboratory (SRNL) and the Oak Ridge National Laboratory (ORNL). SRNL wrote a Task Technical Quality and Assurance Plan for this work. As part of the envisioned testing regime, it was decided to perform an ESS test using a simulated waste that simulated a typical envisioned SWPF feed, but with added potassium to make the waste more challenging. Potassium interferes in the cesium removal, and its concentration is limited in the feed to

Next Generation Solvent-Materials Compatibility with Polymer Components Within Modular Caustic-Side Solvent Extraction Unit (Final Report).

Next Generation Solvent-Materials Compatibility with Polymer Components Within Modular Caustic-Side Solvent Extraction Unit (Final Report). PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Office of Waste Processing, within the Office of Technology Innovation and Development, is funding the development of an enhanced solvent for deployment at the Savannah River Site for removal of cesium from High Level Waste. The technical effort is collaboration between Oak Ridge National Laboratory (ORNL), Savannah River National Laboratory (SRNL), and Argonne National Laboratory. The first deployment target for the technology is within the Modular Caustic-Side Solvent Extraction Unit (MCU). Deployment of a new chemical within an existing facility requires verification that the chemical components are compatible with the installed equipment. In the instance of a new organic solvent, the primary focus is on compatibility of the solvent with organic polymers used in the facility. This report provides the data from exposing these polymers to the Next Generation Solvent (NGS). The test was conducted over six months. An assessment of the dimensional stability of polymers present in MCU (i.e., PEEK, Grafoil, Tefzel and Isolast) in the modified NGS (where the concentration of LIX{reg_sign}79 and MaxCalix was varied systematically) showed that LIX{reg_sign}79 selectively affected Tefzel and its different grades (by an increase in size and lowering its density). The copolymer structure of Tefzel and possibly its porosity allows for the easier diffusion of LIX{reg_sign}79. Tefzel is used as the seat material in some of the valves at MCU. Long term exposure to LIX{reg_sign}79, may make the valves hard to operate over time due to the seat material (Tefzel) increasing in size. However, since the physical changes of Tefzel in the improved solvent are comparable to the changes in the CSSX baseline solvent, no design changes are needed with respect to the Tefzel seating material. PEEK, Grafoil and Isolast were not affected by LIX{reg_sign}79 and MaxCalix within six months of exposure. The initial rapid weight gain observed in every polymer is assigned to the finite and limited uptake of Isopar{reg_sign} L/Modifier by the polymers probably due to the polymers porosity and rough surfaces. Spectroscopic data on the organic liquid and the polymer surfaces showed no preferential adsorption of any component in the NGS to the polymers and with the exception of CPVC, no leachate was observed in the NGS from any of the polymers studied. The testing shows no major concerns for compatibility over the short duration of these tests but does indicate that longer duration exposure studies are warranted, especially for Tefzel. However, the physical changes experienced by Tefzel in the improved solvent were comparable to the physical changes obtained when Tefzel is placed in CSSX baseline solvent. Therefore, there is no effect of the improved solvent beyond those observed in CSSX baseline solvent.

Demonstration of the Next-Generation Caustic-Side Solvent Extraction Solvent with 2-CM Centrigugal Contractors Using Tank 49H Waste and Waste Simulant

Demonstration of the Next-Generation Caustic-Side Solvent Extraction Solvent with 2-CM Centrigugal Contractors Using Tank 49H Waste and Waste Simulant PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. A solvent extraction system for removal of cesium from alkaline solutions was developed utilizing a novel solvent invented at the Oak Ridge National Laboratory (ORNL). This solvent consists of a calix[4]arene-crown-6 extractant dissolved in an inert hydrocarbon matrix. A modifier is added to the solvent to enhance the extraction power of the calixarene and to prevent the formation of a third phase. An additional additive is used to improve stripping performance and to mitigate the effects of any surfactants present in the feed stream. The process that deploys this solvent system is known as Caustic Side Solvent Extraction (CSSX). The solvent system has been deployed at the Savannah River Site (SRS) in the Modular CSSX Unit (MCU) since 2008.

CAUSTIC SIDE SOLVENT EXTRACTION AT THE SAVANNAH RIVER SITE OPERATING EXPERIENCE AND LESSONS LEARNED.

CAUSTIC SIDE SOLVENT EXTRACTION AT THE SAVANNAH RIVER SITE OPERATING EXPERIENCE AND LESSONS LEARNED. PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The Modular Caustic-Side Solvent Extraction Unit (MCU) is the first, production-scale Caustic-Side Solvent Extraction process for cesium separation to be constructed. The process utilizes an engineered solvent to remove cesium from waste alkaline salt solution resulting from nuclear processes. While the application of this solvent extraction process is unique, the process uses commercially available centrifugal contactors for the primary unit operation as well as other common methods of physical separation of immiscible liquids. The fission product, cesium-137, is the primary focus of the process due to the hazards associated with its decay. The cesium is extracted from the waste, concentrated, and stripped out of the solvent resulting in a low-level waste salt solution and a concentrated cesium nitrate stream. The concentrated cesium stream can be vitrified into borosilicate glass with almost no increase in glass volume, and the salt solution can be dispositioned as a low-level grout. The unit is deployed as an interim process to disposition waste prior to start-up of the Salt Waste Processing Facility. The Salt Waste Processing Facility utilizes the same cesium removal technology, but will treat more contaminated waste. The MCU is not only fulfilling a critical need, it is the first demonstration of the process at production-scale.

Characterization of Solids in Fouled Modular Caustic Side Solvent Extraction Unit (MCU) Prefilter/Coalescer Media

Characterization of Solids in Fouled Modular Caustic Side Solvent Extraction Unit (MCU) Prefilter/Coalescer Media PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description


Demonstration of the Next-Generation Caustic-Side Solvent Extraction Solvent with 2-CM Centrifugal Contractors Using Tank 49H Waste and Waste Simulant

Demonstration of the Next-Generation Caustic-Side Solvent Extraction Solvent with 2-CM Centrifugal Contractors Using Tank 49H Waste and Waste Simulant PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Researchers successfully demonstrated the chemistry and process equipment of the Caustic-Side Solvent Extraction (CSSX) flowsheet using MaxCalix for the decontamination of high level waste (HLW). The demonstration was completed using a 12-stage, 2-cm centrifugal contactor apparatus at the Savannah River National Laboratory (SRNL). This represents the first CSSX process demonstration of the MaxCalix solvent system with Savannah River Site (SRS) HLW. Two tests lasting 24 and 27 hours processed non-radioactive simulated Tank 49H waste and actual Tank 49H HLW, respectively. Conclusions from this work include the following. The CSSX process is capable of reducing 137Cs in high level radioactive waste by a factor of more than 40,000 using five extraction, two scrub, and five strip stages. Tests demonstrated extraction and strip section stage efficiencies of greater than 93% for the Tank 49H waste test and greater than 88% for the simulant waste test. During a test with HLW, researchers processed 39 liters of Tank 49H solution and the waste raffinate had an average decontamination factor (DF) of 6.78E+04, with a maximum of 1.08E+05. A simulant waste solution (≈34.5 liters) with an initial Cs concentration of 83.1 mg/L was processed and had an average DF greater than 5.9E+03, with a maximum DF of greater than 6.6E+03. The difference may be attributable to differences in contactor stage efficiencies. Test results showed the solvent can be stripped of cesium and recycled for ≈25 solvent turnovers without the occurrence of any measurable solvent degradation or negative effects from minor components. Based on the performance of the 12-stage 2-cm apparatus with the Tank 49H HLW, the projected DF for MCU with seven extraction, two scrub, and seven strip stages operating at a nominal efficiency of 90% is ≈388,000. At 95% stage efficiency, the DF in MCU would be ≈3.2 million. Carryover of organic solvent in aqueous streams (and aqueous in organic streams) was less than 0.1% when processing Tank 49H HLW. The entrained solvent concentration measured in the decontaminated salt solution (DSS) was as much as ≈140 mg/L, although that value may be overstated by as much as 50% due to modifier solubility in the DSS. The entrained solvent concentration was measured in the strip effluent (SE) and the results are pending. A steady-state concentration factor (CF) of 15.9 was achieved with Tank 49H HLW. Cesium distribution ratios [D(Cs)] were measured with non-radioactive Tank 49H waste simulant and actual Tank 49H waste. Below is a comparison of D(Cs) values of ESS and 2-cm tests. Batch Extraction-Strip-Scrub (ESS) tests yielded D(Cs) values for extraction of ≈81-88 for tests with Tank 49H waste and waste simulant. The results from the 2-cm contactor tests were in agreement with values of 58-92 for the Tank 49H HLW test and 54-83 for the simulant waste test. These values are consistent with the reference D(Cs) for extraction of ≈60. In tests with Tank 49H waste and waste simulant, batch ESS tests measured D(Cs) values for the two scrub stages as ≈3.5-5.0 for the first scrub stage and ≈1.0-3.0 for the second scrub stage. In the Tank 49H test, the D(Cs) values for the 2-cm test were far from the ESS values. A D(Cs) value of 161 was measured for the first scrub stage and 10.8 for the second scrub stage. The data suggest that the scrub stage is not operating as effectively as intended. For the simulant test, a D(Cs) value of 1.9 was measured for the first scrub stage; the sample from the second scrub stage was compromised. Measurements of the pH of all stage samples for the Tank 49H test showed that the pH for extraction and scrub stages was 14 and the pH for the strip stages was ≈7. It is expected that the pH of the second scrub stage would be ≈12-13. Batch ESS tests measured D(Cs) values for the strip stages to be ≈0.002-0.010. A high value in Strip No.3 of a test with simulant solution has been attributed to issues associated with the limits of detection for the analytical method. In the 2-cm contactor tests, the first four strip stages of the Tank 49H waste test and all five strip stages in the simulant waste test had higher values than the ESS tests. Only the fifth strip stage D(Cs) value of the Tank 49H waste test matched that of the ESS tests. It is speculated that the less-than-optimal performance of the strip section is caused by inefficiencies in the scrub section. Because strip is sensitive to pH, the elevated pH value in the second scrub stage may be the cause of strip performance. In spite of the D(Cs) values obtained in the scrub and strip sections, testing showed that the solvent system is robust. Average DFs for the process far exceeded targets even though the scrub and strip stages did not function optimally. Correction of the issue in the scrub and strip stages is expected to yield even higher waste DFs.

Effect of Variation in Modular Caustic-side Solvent Extraction Unit Parameters on Process Performance

Effect of Variation in Modular Caustic-side Solvent Extraction Unit Parameters on Process Performance PDF Author: Kofi Adu-Wusu
Publisher:
ISBN:
Category : Chemical engineering
Languages : en
Pages :

Book Description


Facility Improvements and Modifications to Extend the Operational Life of the Modular Caustic-Side Solvent Extraction Process - 16082

Facility Improvements and Modifications to Extend the Operational Life of the Modular Caustic-Side Solvent Extraction Process - 16082 PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description