Author: John Lawson
Publisher: Duxbury Resource Center
ISBN:
Category : Engineering
Languages : en
Pages : 828
Book Description
Through years of teaching experience, John S. Lawson and John Erjavec have learned that it doesn't take much theoretical background before engineers can learn practical methods of data collections, analysis, and interpretation that will be useful in real life and on the job. With this premise in mind, the authors wrote ENGINEERING AND INDUSTRIAL STATISTICS, which includes the basic topics of engineering statistics but puts less emphasis on the theoretical concepts and elementary topics usually found in an introductory statistics book. Instead, the authors put more emphasis on techniques that will be useful for engineers. With fewer details of traditional probability and inference and more emphasis on the topics useful to engineers, the book is flexible for instructors and interesting for students.
Modern Statistics for Engineering and Quality Improvement
Author: John Lawson
Publisher: Duxbury Resource Center
ISBN:
Category : Engineering
Languages : en
Pages : 828
Book Description
Through years of teaching experience, John S. Lawson and John Erjavec have learned that it doesn't take much theoretical background before engineers can learn practical methods of data collections, analysis, and interpretation that will be useful in real life and on the job. With this premise in mind, the authors wrote ENGINEERING AND INDUSTRIAL STATISTICS, which includes the basic topics of engineering statistics but puts less emphasis on the theoretical concepts and elementary topics usually found in an introductory statistics book. Instead, the authors put more emphasis on techniques that will be useful for engineers. With fewer details of traditional probability and inference and more emphasis on the topics useful to engineers, the book is flexible for instructors and interesting for students.
Publisher: Duxbury Resource Center
ISBN:
Category : Engineering
Languages : en
Pages : 828
Book Description
Through years of teaching experience, John S. Lawson and John Erjavec have learned that it doesn't take much theoretical background before engineers can learn practical methods of data collections, analysis, and interpretation that will be useful in real life and on the job. With this premise in mind, the authors wrote ENGINEERING AND INDUSTRIAL STATISTICS, which includes the basic topics of engineering statistics but puts less emphasis on the theoretical concepts and elementary topics usually found in an introductory statistics book. Instead, the authors put more emphasis on techniques that will be useful for engineers. With fewer details of traditional probability and inference and more emphasis on the topics useful to engineers, the book is flexible for instructors and interesting for students.
Statistical Methods for Quality Improvement
Author: Thomas P. Ryan
Publisher: John Wiley & Sons
ISBN: 1118058100
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.
Publisher: John Wiley & Sons
ISBN: 1118058100
Category : Technology & Engineering
Languages : en
Pages : 578
Book Description
Praise for the Second Edition "As a comprehensive statistics reference book for quality improvement, it certainly is one of the best books available." —Technometrics This new edition continues to provide the most current, proven statistical methods for quality control and quality improvement The use of quantitative methods offers numerous benefits in the fields of industry and business, both through identifying existing trouble spots and alerting management and technical personnel to potential problems. Statistical Methods for Quality Improvement, Third Edition guides readers through a broad range of tools and techniques that make it possible to quickly identify and resolve both current and potential trouble spots within almost any manufacturing or nonmanufacturing process. The book provides detailed coverage of the application of control charts, while also exploring critical topics such as regression, design of experiments, and Taguchi methods. In this new edition, the author continues to explain how to combine the many statistical methods explored in the book in order to optimize quality control and improvement. The book has been thoroughly revised and updated to reflect the latest research and practices in statistical methods and quality control, and new features include: Updated coverage of control charts, with newly added tools The latest research on the monitoring of linear profiles and other types of profiles Sections on generalized likelihood ratio charts and the effects of parameter estimation on the properties of CUSUM and EWMA procedures New discussions on design of experiments that include conditional effects and fraction of design space plots New material on Lean Six Sigma and Six Sigma programs and training Incorporating the latest software applications, the author has added coverage on how to use Minitab software to obtain probability limits for attribute charts. new exercises have been added throughout the book, allowing readers to put the latest statistical methods into practice. Updated references are also provided, shedding light on the current literature and providing resources for further study of the topic. Statistical Methods for Quality Improvement, Third Edition is an excellent book for courses on quality control and design of experiments at the upper-undergraduate and graduate levels. the book also serves as a valuable reference for practicing statisticians, engineers, and physical scientists interested in statistical quality improvement.
Modern Engineering Statistics
Author: Thomas P. Ryan
Publisher: John Wiley & Sons
ISBN: 0470081872
Category : Mathematics
Languages : en
Pages : 606
Book Description
An introductory perspective on statistical applications in the field of engineering Modern Engineering Statistics presents state-of-the-art statistical methodology germane to engineering applications. With a nice blend of methodology and applications, this book provides and carefully explains the concepts necessary for students to fully grasp and appreciate contemporary statistical techniques in the context of engineering. With almost thirty years of teaching experience, many of which were spent teaching engineering statistics courses, the author has successfully developed a book that displays modern statistical techniques and provides effective tools for student use. This book features: Examples demonstrating the use of statistical thinking and methodology for practicing engineers A large number of chapter exercises that provide the opportunity for readers to solve engineering-related problems, often using real data sets Clear illustrations of the relationship between hypothesis tests and confidence intervals Extensive use of Minitab and JMP to illustrate statistical analyses The book is written in an engaging style that interconnects and builds on discussions, examples, and methods as readers progress from chapter to chapter. The assumptions on which the methodology is based are stated and tested in applications. Each chapter concludes with a summary highlighting the key points that are needed in order to advance in the text, as well as a list of references for further reading. Certain chapters that contain more than a few methods also provide end-of-chapter guidelines on the proper selection and use of those methods. Bridging the gap between statistics education and real-world applications, Modern Engineering Statistics is ideal for either a one- or two-semester course in engineering statistics.
Publisher: John Wiley & Sons
ISBN: 0470081872
Category : Mathematics
Languages : en
Pages : 606
Book Description
An introductory perspective on statistical applications in the field of engineering Modern Engineering Statistics presents state-of-the-art statistical methodology germane to engineering applications. With a nice blend of methodology and applications, this book provides and carefully explains the concepts necessary for students to fully grasp and appreciate contemporary statistical techniques in the context of engineering. With almost thirty years of teaching experience, many of which were spent teaching engineering statistics courses, the author has successfully developed a book that displays modern statistical techniques and provides effective tools for student use. This book features: Examples demonstrating the use of statistical thinking and methodology for practicing engineers A large number of chapter exercises that provide the opportunity for readers to solve engineering-related problems, often using real data sets Clear illustrations of the relationship between hypothesis tests and confidence intervals Extensive use of Minitab and JMP to illustrate statistical analyses The book is written in an engaging style that interconnects and builds on discussions, examples, and methods as readers progress from chapter to chapter. The assumptions on which the methodology is based are stated and tested in applications. Each chapter concludes with a summary highlighting the key points that are needed in order to advance in the text, as well as a list of references for further reading. Certain chapters that contain more than a few methods also provide end-of-chapter guidelines on the proper selection and use of those methods. Bridging the gap between statistics education and real-world applications, Modern Engineering Statistics is ideal for either a one- or two-semester course in engineering statistics.
Modern Statistics
Author: Ron S. Kenett
Publisher: Springer Nature
ISBN: 3031075668
Category : Computers
Languages : en
Pages : 453
Book Description
This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
Publisher: Springer Nature
ISBN: 3031075668
Category : Computers
Languages : en
Pages : 453
Book Description
This innovative textbook presents material for a course on modern statistics that incorporates Python as a pedagogical and practical resource. Drawing on many years of teaching and conducting research in various applied and industrial settings, the authors have carefully tailored the text to provide an ideal balance of theory and practical applications. Numerous examples and case studies are incorporated throughout, and comprehensive Python applications are illustrated in detail. A custom Python package is available for download, allowing students to reproduce these examples and explore others. The first chapters of the text focus on analyzing variability, probability models, and distribution functions. Next, the authors introduce statistical inference and bootstrapping, and variability in several dimensions and regression models. The text then goes on to cover sampling for estimation of finite population quantities and time series analysis and prediction, concluding with two chapters on modern data analytic methods. Each chapter includes exercises, data sets, and applications to supplement learning. Modern Statistics: A Computer-Based Approach with Python is intended for a one- or two-semester advanced undergraduate or graduate course. Because of the foundational nature of the text, it can be combined with any program requiring data analysis in its curriculum, such as courses on data science, industrial statistics, physical and social sciences, and engineering. Researchers, practitioners, and data scientists will also find it to be a useful resource with the numerous applications and case studies that are included. A second, closely related textbook is titled Industrial Statistics: A Computer-Based Approach with Python. It covers topics such as statistical process control, including multivariate methods, the design of experiments, including computer experiments and reliability methods, including Bayesian reliability. These texts can be used independently or for consecutive courses. The mistat Python package can be accessed at https://gedeck.github.io/mistat-code-solutions/ModernStatistics/ "In this book on Modern Statistics, the last two chapters on modern analytic methods contain what is very popular at the moment, especially in Machine Learning, such as classifiers, clustering methods and text analytics. But I also appreciate the previous chapters since I believe that people using machine learning methods should be aware that they rely heavily on statistical ones. I very much appreciate the many worked out cases, based on the longstanding experience of the authors. They are very useful to better understand, and then apply, the methods presented in the book. The use of Python corresponds to the best programming experience nowadays. For all these reasons, I think the book has also a brilliant and impactful future and I commend the authors for that." Professor Fabrizio RuggeriResearch Director at the National Research Council, ItalyPresident of the International Society for Business and Industrial Statistics (ISBIS)Editor-in-Chief of Applied Stochastic Models in Business and Industry (ASMBI)
Introduction to Statistical Quality Control
Author: Douglas C. Montgomery
Publisher: John Wiley & Sons
ISBN: 1119657075
Category : Process control
Languages : en
Pages : 772
Book Description
"This book is about the use of modern statistical methods for quality control and improvement. It provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts. and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of situations. Although statistical techniques are emphasized. throughout, the book has a strong engineering and management orientation. Extensive knowledge. of statistics is not a prerequisite for using this book. Readers whose background includes a basic course in statistical methods will find much of the material in this book easily accessible"--
Publisher: John Wiley & Sons
ISBN: 1119657075
Category : Process control
Languages : en
Pages : 772
Book Description
"This book is about the use of modern statistical methods for quality control and improvement. It provides comprehensive coverage of the subject from basic principles to state-of-the-art concepts. and applications. The objective is to give the reader a sound understanding of the principles and the basis for applying them in a variety of situations. Although statistical techniques are emphasized. throughout, the book has a strong engineering and management orientation. Extensive knowledge. of statistics is not a prerequisite for using this book. Readers whose background includes a basic course in statistical methods will find much of the material in this book easily accessible"--
Statistical Methods for Quality Assurance
Author: Stephen B. Vardeman
Publisher: Springer
ISBN: 038779106X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the streamlined approach of the text and extensive supporting material facilitate reader understanding. Second Edition Improvements Extensive coverage of measurement quality evaluation (in addition to ANOVA Gauge R&R methodologies) New end-of-section exercises and revised-end-of-chapter exercises Two full sets of slides, one with audio to assist student preparation outside-of-class and another appropriate for professors’ lectures Substantial supporting material Supporting Material Seven R programs that support variables and attributes control chart construction and analyses, Gauge R&R methods, analyses of Fractional Factorial studies, Propagation of Error analyses and Response Surface analyses Documentation for the R programs Excel data files associated with the end-of-chapter problem sets, most from real engineering settings
Publisher: Springer
ISBN: 038779106X
Category : Mathematics
Languages : en
Pages : 447
Book Description
This undergraduate statistical quality assurance textbook clearly shows with real projects, cases and data sets how statistical quality control tools are used in practice. Among the topics covered is a practical evaluation of measurement effectiveness for both continuous and discrete data. Gauge Reproducibility and Repeatability methodology (including confidence intervals for Repeatability, Reproducibility and the Gauge Capability Ratio) is thoroughly developed. Process capability indices and corresponding confidence intervals are also explained. In addition to process monitoring techniques, experimental design and analysis for process improvement are carefully presented. Factorial and Fractional Factorial arrangements of treatments and Response Surface methods are covered. Integrated throughout the book are rich sets of examples and problems that help readers gain a better understanding of where and how to apply statistical quality control tools. These large and realistic problem sets in combination with the streamlined approach of the text and extensive supporting material facilitate reader understanding. Second Edition Improvements Extensive coverage of measurement quality evaluation (in addition to ANOVA Gauge R&R methodologies) New end-of-section exercises and revised-end-of-chapter exercises Two full sets of slides, one with audio to assist student preparation outside-of-class and another appropriate for professors’ lectures Substantial supporting material Supporting Material Seven R programs that support variables and attributes control chart construction and analyses, Gauge R&R methods, analyses of Fractional Factorial studies, Propagation of Error analyses and Response Surface analyses Documentation for the R programs Excel data files associated with the end-of-chapter problem sets, most from real engineering settings
Introduction to Statistical Quality Control
Author: Christina M. Mastrangelo
Publisher: Wiley
ISBN:
Category : Business & Economics
Languages : en
Pages : 244
Book Description
Revised and expanded, this Second Edition continues to explore the modern practice of statistical quality control, providing comprehensive coverage of the subject from basic principles to state-of-the-art concepts and applications. The objective is to give the reader a thorough grounding in the principles of statistical quality control and a basis for applying those principles in a wide variety of both product and nonproduct situations. Divided into four parts, it contains numerous changes, including a more detailed discussion of the basic SPC problem-solving tools and two new case studies, expanded treatment on variable control charts with new examples, a chapter devoted entirely to cumulative-sum control charts and exponentially-weighted, moving-average control charts, and a new section on process improvement with designed experiments.
Publisher: Wiley
ISBN:
Category : Business & Economics
Languages : en
Pages : 244
Book Description
Revised and expanded, this Second Edition continues to explore the modern practice of statistical quality control, providing comprehensive coverage of the subject from basic principles to state-of-the-art concepts and applications. The objective is to give the reader a thorough grounding in the principles of statistical quality control and a basis for applying those principles in a wide variety of both product and nonproduct situations. Divided into four parts, it contains numerous changes, including a more detailed discussion of the basic SPC problem-solving tools and two new case studies, expanded treatment on variable control charts with new examples, a chapter devoted entirely to cumulative-sum control charts and exponentially-weighted, moving-average control charts, and a new section on process improvement with designed experiments.
Statistical Engineering
Author: Stefan H. Steiner
Publisher: Quality Press
ISBN: 0873891368
Category : Business & Economics
Languages : en
Pages : 717
Book Description
Reducing the variation in process outputs is a key part of process improvement. For mass produced components and assemblies, reducing variation can simultaneously reduce overall cost, improve function and increase customer satisfaction with the product. The authors have structured this book around an algorithm for reducing process variation that they call "Statistical Engineering." The algorithm is designed to solve chronic problems on existing high to medium volume manufacturing and assembly processes. The fundamental basis for the algorithm is the belief that we will discover cost effective changes to the process that will reduce variation if we increase our knowledge of how and why a process behaves as it does. A key way to increase process knowledge is to learn empirically, that is, to learn by observation and experimentation. The authors discuss in detail a framework for planning and analyzing empirical investigations, known by its acronym QPDAC (Question, Plan, Data, Analysis, Conclusion). They classify all effective ways to reduce variation into seven approaches. A unique aspect of the algorithm forces early consideration of the feasibility of each of the approaches. Also includes case studies, chapter exercises, chapter supplements, and six appendices. PRAISE FOR Statistical Engineering "I found this book uniquely refreshing. Don't let the title fool you. The methods described in this book are statistically sound but require very little statistics. If you have ever wanted to solve a problem with statistical certainty (without being a statistician) then this book is for you. - A reader in Dayton, OH "This is the most comprehensive treatment of variation reduction methods and insights I’ve ever seen."- Gary M. Hazard Tellabs "Throughout the text emphasis has been placed on teamwork, fixing the obvious before jumping to advanced studies, and cost of implementation. All this makes the manuscript !attractive for real-life application of complex techniques." - Guru Chadhabr Comcast IP Services COMMENTS FROM OTHER CUSTOMERS Average Customer Rating (5 of 5 based on 1 review) "This is NOT a typical book on statistical tools. It is a strategy book on how to search for cost-effective changes to reduce variation using empirical means (i.e. observation and experiment). The uniqueness of this book: Summarizes the seven ways to reduce variation so we know the goal of the data gathering and analysis, present analysis results using graphs instead of P-value, and integrates Taguchi, Shainin methods, and classical statistical approach. It is a must read for those who are in the business of reducing variation using data, in particular for the Six Sigma Black Belts and Master Black Belts. Don't forget to read the solutions to exercises and supplementary materials to each chapter on the enclosed CD-ROM." - A. Wong, Canada
Publisher: Quality Press
ISBN: 0873891368
Category : Business & Economics
Languages : en
Pages : 717
Book Description
Reducing the variation in process outputs is a key part of process improvement. For mass produced components and assemblies, reducing variation can simultaneously reduce overall cost, improve function and increase customer satisfaction with the product. The authors have structured this book around an algorithm for reducing process variation that they call "Statistical Engineering." The algorithm is designed to solve chronic problems on existing high to medium volume manufacturing and assembly processes. The fundamental basis for the algorithm is the belief that we will discover cost effective changes to the process that will reduce variation if we increase our knowledge of how and why a process behaves as it does. A key way to increase process knowledge is to learn empirically, that is, to learn by observation and experimentation. The authors discuss in detail a framework for planning and analyzing empirical investigations, known by its acronym QPDAC (Question, Plan, Data, Analysis, Conclusion). They classify all effective ways to reduce variation into seven approaches. A unique aspect of the algorithm forces early consideration of the feasibility of each of the approaches. Also includes case studies, chapter exercises, chapter supplements, and six appendices. PRAISE FOR Statistical Engineering "I found this book uniquely refreshing. Don't let the title fool you. The methods described in this book are statistically sound but require very little statistics. If you have ever wanted to solve a problem with statistical certainty (without being a statistician) then this book is for you. - A reader in Dayton, OH "This is the most comprehensive treatment of variation reduction methods and insights I’ve ever seen."- Gary M. Hazard Tellabs "Throughout the text emphasis has been placed on teamwork, fixing the obvious before jumping to advanced studies, and cost of implementation. All this makes the manuscript !attractive for real-life application of complex techniques." - Guru Chadhabr Comcast IP Services COMMENTS FROM OTHER CUSTOMERS Average Customer Rating (5 of 5 based on 1 review) "This is NOT a typical book on statistical tools. It is a strategy book on how to search for cost-effective changes to reduce variation using empirical means (i.e. observation and experiment). The uniqueness of this book: Summarizes the seven ways to reduce variation so we know the goal of the data gathering and analysis, present analysis results using graphs instead of P-value, and integrates Taguchi, Shainin methods, and classical statistical approach. It is a must read for those who are in the business of reducing variation using data, in particular for the Six Sigma Black Belts and Master Black Belts. Don't forget to read the solutions to exercises and supplementary materials to each chapter on the enclosed CD-ROM." - A. Wong, Canada
The Career of a Research Statistician
Author: Shelemyahu Zacks
Publisher: Springer Nature
ISBN: 3030394344
Category : Mathematics
Languages : en
Pages : 217
Book Description
This monograph highlights the connection between the theoretical work done by research statisticians and the impact that work has on various industries. Drawing on decades of experience as an industry consultant, the author details how his contributions have had a lasting impact on the field of statistics as a whole. Aspiring statisticians and data scientists will be motivated to find practical applications for their knowledge, as they see how such work can yield breakthroughs in their field. Each chapter highlights a consulting position the author held that resulted in a significant contribution to statistical theory. Topics covered include tracking processes with change points, estimating common parameters, crossing fields with absorption points, military operations research, sampling surveys, stochastic visibility in random fields, reliability analysis, applied probability, and more. Notable advancements within each of these topics are presented by analyzing the problems facing various industries, and how solving those problems contributed to the development of the field. The Career of a Research Statistician is ideal for researchers, graduate students, or industry professionals working in statistics. It will be particularly useful for up-and-coming statisticians interested in the promising connection between academia and industry.
Publisher: Springer Nature
ISBN: 3030394344
Category : Mathematics
Languages : en
Pages : 217
Book Description
This monograph highlights the connection between the theoretical work done by research statisticians and the impact that work has on various industries. Drawing on decades of experience as an industry consultant, the author details how his contributions have had a lasting impact on the field of statistics as a whole. Aspiring statisticians and data scientists will be motivated to find practical applications for their knowledge, as they see how such work can yield breakthroughs in their field. Each chapter highlights a consulting position the author held that resulted in a significant contribution to statistical theory. Topics covered include tracking processes with change points, estimating common parameters, crossing fields with absorption points, military operations research, sampling surveys, stochastic visibility in random fields, reliability analysis, applied probability, and more. Notable advancements within each of these topics are presented by analyzing the problems facing various industries, and how solving those problems contributed to the development of the field. The Career of a Research Statistician is ideal for researchers, graduate students, or industry professionals working in statistics. It will be particularly useful for up-and-coming statisticians interested in the promising connection between academia and industry.
Modern Statistics with R
Author: Måns Thulin
Publisher: CRC Press
ISBN: 9781032512440
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.
Publisher: CRC Press
ISBN: 9781032512440
Category : Mathematics
Languages : en
Pages : 0
Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.