Author: Joseph Mileti
Publisher: Cambridge University Press
ISBN: 1108833144
Category : Mathematics
Languages : en
Pages : 517
Book Description
This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.
Modern Mathematical Logic
Author: Joseph Mileti
Publisher: Cambridge University Press
ISBN: 1108833144
Category : Mathematics
Languages : en
Pages : 517
Book Description
This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.
Publisher: Cambridge University Press
ISBN: 1108833144
Category : Mathematics
Languages : en
Pages : 517
Book Description
This textbook gives a comprehensive and modern introduction to mathematical logic at the upper-undergraduate and beginning graduate level.
Logic of Mathematics
Author: Zofia Adamowicz
Publisher: John Wiley & Sons
ISBN: 1118030796
Category : Mathematics
Languages : en
Pages : 276
Book Description
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Publisher: John Wiley & Sons
ISBN: 1118030796
Category : Mathematics
Languages : en
Pages : 276
Book Description
A thorough, accessible, and rigorous presentation of the central theorems of mathematical logic . . . ideal for advanced students of mathematics, computer science, and logic Logic of Mathematics combines a full-scale introductory course in mathematical logic and model theory with a range of specially selected, more advanced theorems. Using a strict mathematical approach, this is the only book available that contains complete and precise proofs of all of these important theorems: * Gödel's theorems of completeness and incompleteness * The independence of Goodstein's theorem from Peano arithmetic * Tarski's theorem on real closed fields * Matiyasevich's theorem on diophantine formulas Logic of Mathematics also features: * Full coverage of model theoretical topics such as definability, compactness, ultraproducts, realization, and omission of types * Clear, concise explanations of all key concepts, from Boolean algebras to Skolem-Löwenheim constructions and other topics * Carefully chosen exercises for each chapter, plus helpful solution hints At last, here is a refreshingly clear, concise, and mathematically rigorous presentation of the basic concepts of mathematical logic-requiring only a standard familiarity with abstract algebra. Employing a strict mathematical approach that emphasizes relational structures over logical language, this carefully organized text is divided into two parts, which explain the essentials of the subject in specific and straightforward terms. Part I contains a thorough introduction to mathematical logic and model theory-including a full discussion of terms, formulas, and other fundamentals, plus detailed coverage of relational structures and Boolean algebras, Gödel's completeness theorem, models of Peano arithmetic, and much more. Part II focuses on a number of advanced theorems that are central to the field, such as Gödel's first and second theorems of incompleteness, the independence proof of Goodstein's theorem from Peano arithmetic, Tarski's theorem on real closed fields, and others. No other text contains complete and precise proofs of all of these theorems. With a solid and comprehensive program of exercises and selected solution hints, Logic of Mathematics is ideal for classroom use-the perfect textbook for advanced students of mathematics, computer science, and logic.
Perspectives on the History of Mathematical Logic
Author: Thomas Drucker
Publisher: Springer Science & Business Media
ISBN: 0817647694
Category : Mathematics
Languages : en
Pages : 218
Book Description
This volume offers insights into the development of mathematical logic over the last century. Arising from a special session of the history of logic at an American Mathematical Society meeting, the chapters explore technical innovations, the philosophical consequences of work during the period, and the historical and social context in which the logicians worked. The discussions herein will appeal to mathematical logicians and historians of mathematics, as well as philosophers and historians of science.
Publisher: Springer Science & Business Media
ISBN: 0817647694
Category : Mathematics
Languages : en
Pages : 218
Book Description
This volume offers insights into the development of mathematical logic over the last century. Arising from a special session of the history of logic at an American Mathematical Society meeting, the chapters explore technical innovations, the philosophical consequences of work during the period, and the historical and social context in which the logicians worked. The discussions herein will appeal to mathematical logicians and historians of mathematics, as well as philosophers and historians of science.
A Profile of Mathematical Logic
Author: Howard DeLong
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Publisher: Courier Corporation
ISBN: 0486139158
Category : Mathematics
Languages : en
Pages : 322
Book Description
This introduction to mathematical logic explores philosophical issues and Gödel's Theorem. Its widespread influence extends to the author of Gödel, Escher, Bach, whose Pulitzer Prize–winning book was inspired by this work.
Fundamentals of Mathematical Logic
Author: Peter G. Hinman
Publisher: CRC Press
ISBN: 1439864276
Category : Mathematics
Languages : en
Pages : 895
Book Description
This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.
Publisher: CRC Press
ISBN: 1439864276
Category : Mathematics
Languages : en
Pages : 895
Book Description
This introductory graduate text covers modern mathematical logic from propositional, first-order and infinitary logic and Gödel's Incompleteness Theorems to extensive introductions to set theory, model theory and recursion (computability) theory. Based on the author's more than 35 years of teaching experience, the book develops students' intuition by presenting complex ideas in the simplest context for which they make sense. The book is appropriate for use as a classroom text, for self-study, and as a reference on the state of modern logic.
A Course on Mathematical Logic
Author: Shashi Mohan Srivastava
Publisher: Springer Science & Business Media
ISBN: 1461457467
Category : Mathematics
Languages : en
Pages : 207
Book Description
This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.
Publisher: Springer Science & Business Media
ISBN: 1461457467
Category : Mathematics
Languages : en
Pages : 207
Book Description
This is a short, modern, and motivated introduction to mathematical logic for upper undergraduate and beginning graduate students in mathematics and computer science. Any mathematician who is interested in getting acquainted with logic and would like to learn Gödel’s incompleteness theorems should find this book particularly useful. The treatment is thoroughly mathematical and prepares students to branch out in several areas of mathematics related to foundations and computability, such as logic, axiomatic set theory, model theory, recursion theory, and computability. In this new edition, many small and large changes have been made throughout the text. The main purpose of this new edition is to provide a healthy first introduction to model theory, which is a very important branch of logic. Topics in the new chapter include ultraproduct of models, elimination of quantifiers, types, applications of types to model theory, and applications to algebra, number theory and geometry. Some proofs, such as the proof of the very important completeness theorem, have been completely rewritten in a more clear and concise manner. The new edition also introduces new topics, such as the notion of elementary class of structures, elementary diagrams, partial elementary maps, homogeneous structures, definability, and many more.
Introduction to Mathematical Logic
Author: Alonzo Church
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 140
Book Description
Publisher:
ISBN:
Category : Logic, Symbolic and mathematical
Languages : en
Pages : 140
Book Description
A Concise Introduction to Mathematical Logic
Author: Wolfgang Rautenberg
Publisher: Springer
ISBN: 1441912215
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
Publisher: Springer
ISBN: 1441912215
Category : Mathematics
Languages : en
Pages : 337
Book Description
Mathematical logic developed into a broad discipline with many applications in mathematics, informatics, linguistics and philosophy. This text introduces the fundamentals of this field, and this new edition has been thoroughly expanded and revised.
The Development of Modern Logic
Author: Leila Haaparanta
Publisher: OUP USA
ISBN: 0195137310
Category : Philosophy
Languages : en
Pages : 1005
Book Description
This volume contains newly-commissioned articles covering the development of modern logic from the late medieval period (fourteenth century) through the end of the twentieth-century. It is the first volume to discuss the field with this breadth of coverage and depth. It will appeal to scholars and students of philosophical logic and the philosophy of logic.
Publisher: OUP USA
ISBN: 0195137310
Category : Philosophy
Languages : en
Pages : 1005
Book Description
This volume contains newly-commissioned articles covering the development of modern logic from the late medieval period (fourteenth century) through the end of the twentieth-century. It is the first volume to discuss the field with this breadth of coverage and depth. It will appeal to scholars and students of philosophical logic and the philosophy of logic.
Popular Lectures on Mathematical Logic
Author: Hao Wang
Publisher: Courier Corporation
ISBN: 0486171043
Category : Mathematics
Languages : en
Pages : 290
Book Description
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.
Publisher: Courier Corporation
ISBN: 0486171043
Category : Mathematics
Languages : en
Pages : 290
Book Description
Noted logician discusses both theoretical underpinnings and practical applications, exploring set theory, model theory, recursion theory and constructivism, proof theory, logic's relation to computer science, and other subjects. 1981 edition, reissued by Dover in 1993 with a new Postscript by the author.