Author: Kenneth Kuttler
Publisher: CRC Press
ISBN: 1351360000
Category : Mathematics
Languages : en
Pages : 584
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Modern Analysis (1997)
Author: Kenneth Kuttler
Publisher: CRC Press
ISBN: 1351360000
Category : Mathematics
Languages : en
Pages : 584
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Publisher: CRC Press
ISBN: 1351360000
Category : Mathematics
Languages : en
Pages : 584
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
A Course of Modern Analysis
Author: E. T. Whittaker
Publisher: Cambridge University Press
ISBN: 9780521588072
Category : Mathematics
Languages : en
Pages : 620
Book Description
This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions.
Publisher: Cambridge University Press
ISBN: 9780521588072
Category : Mathematics
Languages : en
Pages : 620
Book Description
This classic text is known to and used by thousands of mathematicians and students of mathematics thorughout the world. It gives an introduction to the general theory of infinite processes and of analytic functions together with an account of the principle transcendental functions.
Analysis I
Author: Herbert Amann
Publisher: Springer Science & Business Media
ISBN: 3764373237
Category : Mathematics
Languages : en
Pages : 436
Book Description
"This textbook provides an outstanding introduction to analysis. It is distinguished by its high level of presentation and its focus on the essential.'' (Zeitschrift für Analysis und ihre Anwendung 18, No. 4 - G. Berger, review of the first German edition) "One advantage of this presentation is that the power of the abstract concepts are convincingly demonstrated using concrete applications.'' (W. Grölz, review of the first German edition)
Publisher: Springer Science & Business Media
ISBN: 3764373237
Category : Mathematics
Languages : en
Pages : 436
Book Description
"This textbook provides an outstanding introduction to analysis. It is distinguished by its high level of presentation and its focus on the essential.'' (Zeitschrift für Analysis und ihre Anwendung 18, No. 4 - G. Berger, review of the first German edition) "One advantage of this presentation is that the power of the abstract concepts are convincingly demonstrated using concrete applications.'' (W. Grölz, review of the first German edition)
Modern Analysis
Author: Kenneth Kuttler
Publisher: CRC Press
ISBN: 9780849371660
Category : Mathematics
Languages : en
Pages : 380
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Publisher: CRC Press
ISBN: 9780849371660
Category : Mathematics
Languages : en
Pages : 380
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Modern Analysis (1997)
Author: Kenneth Kuttler
Publisher: CRC Press
ISBN: 1351359991
Category : Mathematics
Languages : en
Pages : 622
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Publisher: CRC Press
ISBN: 1351359991
Category : Mathematics
Languages : en
Pages : 622
Book Description
Modern Analysis provides coverage of real and abstract analysis, offering a sensible introduction to functional analysis as well as a thorough discussion of measure theory, Lebesgue integration, and related topics. This significant study clearly and distinctively presents the teaching and research literature of graduate analysis: Providing a fundamental, modern approach to measure theory Investigating advanced material on the Bochner integral, geometric theory, and major theorems in Fourier Analysis Rn, including the theory of singular integrals and Milhin's theorem - material that does not appear in textbooks Offering exceptionally concise and cardinal versions of all the main theorems about characteristic functions Containing an original examination of sufficient statistics, based on the general theory of Radon measures With an ambitious scope, this resource unifies various topics into one volume succinctly and completely. The contents span basic measure theory in an abstract and concrete form, material on classic linear functional analysis, probability, and some major results used in the theory of partial differential equations. Two different proofs of the central limit theorem are examined as well as a straightforward approach to conditional probability and expectation. Modern Analysis provides ample and well-constructed exercises and examples. Introductory topology is included to help the reader understand such items as the Riesz theorem, detailing its proofs and statements. This work will help readers apply measure theory to probability theory, guiding them to understand the theorems rather than merely follow directions.
Real Analysis
Author: Gerald B. Folland
Publisher: John Wiley & Sons
ISBN: 1118626397
Category : Mathematics
Languages : en
Pages : 368
Book Description
An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.
Publisher: John Wiley & Sons
ISBN: 1118626397
Category : Mathematics
Languages : en
Pages : 368
Book Description
An in-depth look at real analysis and its applications-now expanded and revised. This new edition of the widely used analysis book continues to cover real analysis in greater detail and at a more advanced level than most books on the subject. Encompassing several subjects that underlie much of modern analysis, the book focuses on measure and integration theory, point set topology, and the basics of functional analysis. It illustrates the use of the general theories and introduces readers to other branches of analysis such as Fourier analysis, distribution theory, and probability theory. This edition is bolstered in content as well as in scope-extending its usefulness to students outside of pure analysis as well as those interested in dynamical systems. The numerous exercises, extensive bibliography, and review chapter on sets and metric spaces make Real Analysis: Modern Techniques and Their Applications, Second Edition invaluable for students in graduate-level analysis courses. New features include: * Revised material on the n-dimensional Lebesgue integral. * An improved proof of Tychonoff's theorem. * Expanded material on Fourier analysis. * A newly written chapter devoted to distributions and differential equations. * Updated material on Hausdorff dimension and fractal dimension.
ISTFA 1997: International Symposium for Testing and Failure Analysis
Author: Grace M. Davidson
Publisher: ASM International
ISBN: 1615030824
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
Publisher: ASM International
ISBN: 1615030824
Category : Technology & Engineering
Languages : en
Pages : 310
Book Description
Economics and Administration Sciences Modern Analysis and Researches
Author: Ahmet KADİROĞLU
Publisher: Livre de Lyon
ISBN: 2382365641
Category : Business & Economics
Languages : en
Pages : 213
Book Description
Economics and Administration Sciences Modern Analysis and Researches
Publisher: Livre de Lyon
ISBN: 2382365641
Category : Business & Economics
Languages : en
Pages : 213
Book Description
Economics and Administration Sciences Modern Analysis and Researches
Variational Analysis
Author: R. Tyrrell Rockafellar
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Publisher: Springer Science & Business Media
ISBN: 3642024319
Category : Mathematics
Languages : en
Pages : 747
Book Description
From its origins in the minimization of integral functionals, the notion of variations has evolved greatly in connection with applications in optimization, equilibrium, and control. This book develops a unified framework and provides a detailed exposition of variational geometry and subdifferential calculus in their current forms beyond classical and convex analysis. Also covered are set-convergence, set-valued mappings, epi-convergence, duality, and normal integrands.
Modern Real Analysis
Author: William P. Ziemer
Publisher: Springer
ISBN: 331964629X
Category : Mathematics
Languages : en
Pages : 389
Book Description
This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.
Publisher: Springer
ISBN: 331964629X
Category : Mathematics
Languages : en
Pages : 389
Book Description
This first year graduate text is a comprehensive resource in real analysis based on a modern treatment of measure and integration. Presented in a definitive and self-contained manner, it features a natural progression of concepts from simple to difficult. Several innovative topics are featured, including differentiation of measures, elements of Functional Analysis, the Riesz Representation Theorem, Schwartz distributions, the area formula, Sobolev functions and applications to harmonic functions. Together, the selection of topics forms a sound foundation in real analysis that is particularly suited to students going on to further study in partial differential equations. This second edition of Modern Real Analysis contains many substantial improvements, including the addition of problems for practicing techniques, and an entirely new section devoted to the relationship between Lebesgue and improper integrals. Aimed at graduate students with an understanding of advanced calculus, the text will also appeal to more experienced mathematicians as a useful reference.