Modern Statistics with R PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modern Statistics with R PDF full book. Access full book title Modern Statistics with R by Måns Thulin. Download full books in PDF and EPUB format.

Modern Statistics with R

Modern Statistics with R PDF Author: Måns Thulin
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0

Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Modern Statistics with R

Modern Statistics with R PDF Author: Måns Thulin
Publisher:
ISBN: 9781032497457
Category : Mathematics
Languages : en
Pages : 0

Book Description
The past decades have transformed the world of statistical data analysis, with new methods, new types of data, and new computational tools. Modern Statistics with R introduces you to key parts of this modern statistical toolkit. It teaches you: Data wrangling - importing, formatting, reshaping, merging, and filtering data in R. Exploratory data analysis - using visualisations and multivariate techniques to explore datasets. Statistical inference - modern methods for testing hypotheses and computing confidence intervals. Predictive modelling - regression models and machine learning methods for prediction, classification, and forecasting. Simulation - using simulation techniques for sample size computations and evaluations of statistical methods. Ethics in statistics - ethical issues and good statistical practice. R programming - writing code that is fast, readable, and (hopefully!) free from bugs. No prior programming experience is necessary. Clear explanations and examples are provided to accommodate readers at all levels of familiarity with statistical principles and coding practices. A basic understanding of probability theory can enhance comprehension of certain concepts discussed within this book. In addition to plenty of examples, the book includes more than 200 exercises, with fully worked solutions available at: www.modernstatisticswithr.com.

Multiple Regression and Beyond

Multiple Regression and Beyond PDF Author: Timothy Z. Keith
Publisher: Routledge
ISBN: 1351667939
Category : Education
Languages : en
Pages : 640

Book Description
Companion Website materials: https://tzkeith.com/ Multiple Regression and Beyond offers a conceptually-oriented introduction to multiple regression (MR) analysis and structural equation modeling (SEM), along with analyses that flow naturally from those methods. By focusing on the concepts and purposes of MR and related methods, rather than the derivation and calculation of formulae, this book introduces material to students more clearly, and in a less threatening way. In addition to illuminating content necessary for coursework, the accessibility of this approach means students are more likely to be able to conduct research using MR or SEM--and more likely to use the methods wisely. This book: • Covers both MR and SEM, while explaining their relevance to one another • Includes path analysis, confirmatory factor analysis, and latent growth modeling • Makes extensive use of real-world research examples in the chapters and in the end-of-chapter exercises • Extensive use of figures and tables providing examples and illustrating key concepts and techniques New to this edition: • New chapter on mediation, moderation, and common cause • New chapter on the analysis of interactions with latent variables and multilevel SEM • Expanded coverage of advanced SEM techniques in chapters 18 through 22 • International case studies and examples • Updated instructor and student online resources

Regression Analysis and Linear Models

Regression Analysis and Linear Models PDF Author: Richard B. Darlington
Publisher: Guilford Publications
ISBN: 1462527981
Category : Social Science
Languages : en
Pages : 689

Book Description
Emphasizing conceptual understanding over mathematics, this user-friendly text introduces linear regression analysis to students and researchers across the social, behavioral, consumer, and health sciences. Coverage includes model construction and estimation, quantification and measurement of multivariate and partial associations, statistical control, group comparisons, moderation analysis, mediation and path analysis, and regression diagnostics, among other important topics. Engaging worked-through examples demonstrate each technique, accompanied by helpful advice and cautions. The use of SPSS, SAS, and STATA is emphasized, with an appendix on regression analysis using R. The companion website (www.afhayes.com) provides datasets for the book's examples as well as the RLM macro for SPSS and SAS. Pedagogical Features: *Chapters include SPSS, SAS, or STATA code pertinent to the analyses described, with each distinctively formatted for easy identification. *An appendix documents the RLM macro, which facilitates computations for estimating and probing interactions, dominance analysis, heteroscedasticity-consistent standard errors, and linear spline regression, among other analyses. *Students are guided to practice what they learn in each chapter using datasets provided online. *Addresses topics not usually covered, such as ways to measure a variable’s importance, coding systems for representing categorical variables, causation, and myths about testing interaction.

Regression with Dummy Variables

Regression with Dummy Variables PDF Author: Melissa A. Hardy
Publisher: SAGE
ISBN: 9780803951280
Category : Mathematics
Languages : en
Pages : 100

Book Description
It is often necessary for social scientists to study differences in groups, such as gender or race differences in attitudes, buying behavior, or socioeconomic characteristics. When the researcher seeks to estimate group differences through the use of independent variables that are qualitative, dummy variables allow the researcher to represent information about group membership in quantitative terms without imposing unrealistic measurement assumptions on the categorical variables. Beginning with the simplest model, Hardy probes the use of dummy variable regression in increasingly complex specifications, exploring issues such as: interaction, heteroscedasticity, multiple comparisons and significance testing, the use of effects or contrast coding, testing for curvilinearity, and estimating a piecewise linear regression.

Development Of Modern Statistics And Related Topics: In Celebration Of Prof Yaoting Zhang's 70th Birthday

Development Of Modern Statistics And Related Topics: In Celebration Of Prof Yaoting Zhang's 70th Birthday PDF Author: Jian Huang
Publisher: World Scientific
ISBN: 9814485799
Category : Mathematics
Languages : en
Pages : 301

Book Description
This book encompasses a wide range of important topics. The articles cover the following areas: asymptotic theory and inference, biostatistics, economics and finance, statistical computing and Bayesian statistics, and statistical genetics. Specifically, the issues that are studied include large deviation, deviation inequalities, local sensitivity of model misspecification in likelihood inference, empirical likelihood confidence intervals, uniform convergence rates in density estimation, randomized designs in clinical trials, MCMC and EM algorithms, approximation of p-values in multipoint linkage analysis, use of mixture models in genetic studies, and design and analysis of quantitative traits.

Essential Statistics, Regression, and Econometrics

Essential Statistics, Regression, and Econometrics PDF Author: Gary Smith
Publisher: Academic Press
ISBN: 0128034920
Category : Mathematics
Languages : en
Pages : 397

Book Description
Essential Statistics, Regression, and Econometrics, Second Edition, is innovative in its focus on preparing students for regression/econometrics, and in its extended emphasis on statistical reasoning, real data, pitfalls in data analysis, and modeling issues. This book is uncommonly approachable and easy to use, with extensive word problems that emphasize intuition and understanding. Too many students mistakenly believe that statistics courses are too abstract, mathematical, and tedious to be useful or interesting. To demonstrate the power, elegance, and even beauty of statistical reasoning, this book provides hundreds of new and updated interesting and relevant examples, and discusses not only the uses but also the abuses of statistics. The examples are drawn from many areas to show that statistical reasoning is not an irrelevant abstraction, but an important part of everyday life. - Includes hundreds of updated and new, real-world examples to engage students in the meaning and impact of statistics - Focuses on essential information to enable students to develop their own statistical reasoning - Ideal for one-quarter or one-semester courses taught in economics, business, finance, politics, sociology, and psychology departments, as well as in law and medical schools - Accompanied by an ancillary website with an instructors solutions manual, student solutions manual and supplementing chapters

Handbook of Regression Modeling in People Analytics

Handbook of Regression Modeling in People Analytics PDF Author: Keith McNulty
Publisher: CRC Press
ISBN: 1000427897
Category : Business & Economics
Languages : en
Pages : 272

Book Description
Despite the recent rapid growth in machine learning and predictive analytics, many of the statistical questions that are faced by researchers and practitioners still involve explaining why something is happening. Regression analysis is the best ‘swiss army knife’ we have for answering these kinds of questions. This book is a learning resource on inferential statistics and regression analysis. It teaches how to do a wide range of statistical analyses in both R and in Python, ranging from simple hypothesis testing to advanced multivariate modelling. Although it is primarily focused on examples related to the analysis of people and talent, the methods easily transfer to any discipline. The book hits a ‘sweet spot’ where there is just enough mathematical theory to support a strong understanding of the methods, but with a step-by-step guide and easily reproducible examples and code, so that the methods can be put into practice immediately. This makes the book accessible to a wide readership, from public and private sector analysts and practitioners to students and researchers. Key Features: 16 accompanying datasets across a wide range of contexts (e.g. academic, corporate, sports, marketing) Clear step-by-step instructions on executing the analyses Clear guidance on how to interpret results Primary instruction in R but added sections for Python coders Discussion exercises and data exercises for each of the main chapters Final chapter of practice material and datasets ideal for class homework or project work.

Regression Modeling with Actuarial and Financial Applications

Regression Modeling with Actuarial and Financial Applications PDF Author: Edward W. Frees
Publisher: Cambridge University Press
ISBN: 0521760119
Category : Business & Economics
Languages : en
Pages : 585

Book Description
This book teaches multiple regression and time series and how to use these to analyze real data in risk management and finance.

Applied Regression Modeling

Applied Regression Modeling PDF Author: Iain Pardoe
Publisher: John Wiley & Sons
ISBN: 1118345045
Category : Mathematics
Languages : en
Pages : 319

Book Description
Praise for the First Edition "The attention to detail is impressive. The book is very well written and the author is extremely careful with his descriptions . . . the examples are wonderful." —The American Statistician Fully revised to reflect the latest methodologies and emerging applications, Applied Regression Modeling, Second Edition continues to highlight the benefits of statistical methods, specifically regression analysis and modeling, for understanding, analyzing, and interpreting multivariate data in business, science, and social science applications. The author utilizes a bounty of real-life examples, case studies, illustrations, and graphics to introduce readers to the world of regression analysis using various software packages, including R, SPSS, Minitab, SAS, JMP, and S-PLUS. In a clear and careful writing style, the book introduces modeling extensions that illustrate more advanced regression techniques, including logistic regression, Poisson regression, discrete choice models, multilevel models, and Bayesian modeling. In addition, the Second Edition features clarification and expansion of challenging topics, such as: Transformations, indicator variables, and interaction Testing model assumptions Nonconstant variance Autocorrelation Variable selection methods Model building and graphical interpretation Throughout the book, datasets and examples have been updated and additional problems are included at the end of each chapter, allowing readers to test their comprehension of the presented material. In addition, a related website features the book's datasets, presentation slides, detailed statistical software instructions, and learning resources including additional problems and instructional videos. With an intuitive approach that is not heavy on mathematical detail, Applied Regression Modeling, Second Edition is an excellent book for courses on statistical regression analysis at the upper-undergraduate and graduate level. The book also serves as a valuable resource for professionals and researchers who utilize statistical methods for decision-making in their everyday work.

Learning Statistics with R

Learning Statistics with R PDF Author: Daniel Navarro
Publisher: Lulu.com
ISBN: 1326189727
Category : Computers
Languages : en
Pages : 617

Book Description
"Learning Statistics with R" covers the contents of an introductory statistics class, as typically taught to undergraduate psychology students, focusing on the use of the R statistical software and adopting a light, conversational style throughout. The book discusses how to get started in R, and gives an introduction to data manipulation and writing scripts. From a statistical perspective, the book discusses descriptive statistics and graphing first, followed by chapters on probability theory, sampling and estimation, and null hypothesis testing. After introducing the theory, the book covers the analysis of contingency tables, t-tests, ANOVAs and regression. Bayesian statistics are covered at the end of the book. For more information (and the opportunity to check the book out before you buy!) visit http://ua.edu.au/ccs/teaching/lsr or http://learningstatisticswithr.com