Models for Naturally Fractured, Carbonate Reservoir Simulations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Models for Naturally Fractured, Carbonate Reservoir Simulations PDF full book. Access full book title Models for Naturally Fractured, Carbonate Reservoir Simulations by . Download full books in PDF and EPUB format.

Models for Naturally Fractured, Carbonate Reservoir Simulations

Models for Naturally Fractured, Carbonate Reservoir Simulations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description
This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy's and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

Models for Naturally Fractured, Carbonate Reservoir Simulations

Models for Naturally Fractured, Carbonate Reservoir Simulations PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 16

Book Description
This report outlines the need for new tools for the simulation of fractured carbonate reservoirs. Several problems are identified that call for the development of new reservoir simulation physical models and numerical techniques. These include: karst and vuggy media wherein Darcy's and traditional multi-phase flow laws do not apply; the need for predicting the preproduction state of fracturing and stress so that the later response of effective stress-dependent reservoirs can be predicted; and methods for predicting the fracturing and collapse of vuggy and karst reservoirs in response to draw-down pressure created during production. Specific research directions for addressing each problem are outlined and preliminary results are noted.

Fractured Vuggy Carbonate Reservoir Simulation

Fractured Vuggy Carbonate Reservoir Simulation PDF Author: Jun Yao
Publisher: Springer
ISBN: 3662550326
Category : Science
Languages : en
Pages : 253

Book Description
This book solves the open problems in fluid flow modeling through the fractured vuggy carbonate reservoirs. Fractured vuggy carbonate reservoirs usually have complex pore structures, which contain not only matrix and fractures but also the vugs and cavities. Since the vugs and cavities are irregular in shape and vary in diameter from millimeters to meters, modeling fluid flow through fractured vuggy porous media is still a challenge. The existing modeling theory and methods are not suitable for such reservoir. It starts from the concept of discrete fracture and fracture-vug networks model, and then develops the corresponding mathematical models and numerical methods, including discrete fracture model, discrete fracture-vug model, hybrid model and multiscale models. Based on these discrete porous media models, some equivalent medium models and methods are also discussed. All the modeling and methods shared in this book offer the key recent solutions into this area.

Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs

Geomechanics, Fluid Dynamics and Well Testing, Applied to Naturally Fractured Carbonate Reservoirs PDF Author: Nelson Enrique Barros Galvis
Publisher: Springer
ISBN: 3319775014
Category : Science
Languages : en
Pages : 166

Book Description
This thesis presents an important step towards a deeper understanding of naturally fractured carbonate reservoirs (NFCRs). It demonstrates the various kinds of discontinuities using geological evidence, mathematical kinematics model and computed tomography and uses this as a basis for proposing a new classification for NFCRs. Additionally, this study takes advantage of rock mechanics theory to illustrate how natural fractures can collapse due to fluid flow and pressure changes in the fractured media. The explanations and mathematical modeling developed in this dissertation can be used as diagnostic tools to predict fluid velocity, fluid flow, tectonic fracture collapse, pressure behavior during reservoir depleting, considering stress-sensitive and non-stress-sensitive, with nonlinear terms in the diffusivity equation applied to NFCRs. Furthermore, the book presents the description of real reservoirs with their field data as the principal goal in the mathematical description of the realistic phenomenology of NFCRs.

Pressure Transient Test Analysis of Vuggy Naturally Fractured Carbonate Reservoir

Pressure Transient Test Analysis of Vuggy Naturally Fractured Carbonate Reservoir PDF Author: Babatunde Tolulope Ajayi
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Well pressure transient analysis is widely used in reservoir management to obtain reservoir information needed for reservoir simulation, damage identification, well optimization and stimulation evaluation. The main objective of this project is to analyze, interpret and categorize the pressure transient responses obtained from 22 wells in a vuggy naturally fractured carbonate reservoir in an attempt to understand the heterogeneities of the porosity system. Different modeling techniques useful in simulating well behavior in vuggy naturally fractured reservoirs were developed and categorized. The research focused on pressure transient analysis using homogeneous, radial composite, single fracture, dual porosity and triple porosity reservoir models along with conventional boundary models which show boundary limits including single and double sealing boundary, closure and constant pressure boundary. A triple porosity model was developed, and it proved to be very effective for use in the analysis of the pressure responses obtained from this field. For some wells, the need for new models to characterize the pressure responses in more complex reservoirs was highlighted as conventional models failed.

Implementation and Application of the Embedded Discrete Fracture Model (EDFM) for Reservoir Simulation in Fractured Reservoirs

Implementation and Application of the Embedded Discrete Fracture Model (EDFM) for Reservoir Simulation in Fractured Reservoirs PDF Author: Yifei Xu
Publisher:
ISBN:
Category :
Languages : en
Pages : 246

Book Description
Fractured reservoirs have gained continuous attention from oil and gas industry. A huge amount of hydrocarbon are trapped in naturally fractured carbonate reservoirs. Besides, the advanced technology of multi-stage hydraulic fracturing have gained a great success in economic development of unconventional oil and gas reservoirs. Fractures add complexity into reservoir flow and significantly impact the ultimate recovery. Therefore, it is important yet challenging to accurately and effectively predict the recovery from fractured reservoirs. Conventional dual-continuum approaches, although effective in the simulation of naturally fractured reservoirs, may fail in some cases due to the highly idealized reservoir model. The unstructured-grid discrete fracture models, although flexible in representing complex fracture geometries, are restricted by the high complexity in gridding and high computational cost. An Embedded Discrete Fracture Model (EDFM) was recently developed to honor the accuracy of discrete fracture models while keeping the efficiency offered by structured gridding. By dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs), the flow influence of fractures can be efficiently modeled through transport indices. In this work, the EDFM was implemented in UTCHEM, a chemical flooding in-house reservoir simulator developed at The University of Texas, to study complex recovery processes in fractured reservoirs. In addition, the model was applied in commercial simulators by making use of the non-intrusive property of the EDFM and the NNC functionality offered by the simulators. The accuracy of the EDFM in the modeling of orthogonal, non-orthogonal, and inclined fractures was verified against fine-grid explicit fracture simulations. Furthermore, case studies were performed to investigate the influence of hydraulic fracture orientations on primary depletion and the impact of large-scale natural fractures on water flooding processes. The influence of matrix grid size and fracture relative permeability was also studied. Finally, with modifications in NNC transmissibility calculation, the EDFM was applied to the modeling of a multi-lateral well stimulation technology. The accuracy of the modified formulations was verified through comparison with a multi-branch well method. The simulations carried out in this work confirmed the flexibility, applicability, and extensiveness of the EDFM.

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation

Embedded Discrete Fracture Modeling and Application in Reservoir Simulation PDF Author: Kamy Sepehrnoori
Publisher: Elsevier
ISBN: 0128196882
Category : Business & Economics
Languages : en
Pages : 306

Book Description
The development of naturally fractured reservoirs, especially shale gas and tight oil reservoirs, exploded in recent years due to advanced drilling and fracturing techniques. However, complex fracture geometries such as irregular fracture networks and non-planar fractures are often generated, especially in the presence of natural fractures. Accurate modelling of production from reservoirs with such geometries is challenging. Therefore, Embedded Discrete Fracture Modeling and Application in Reservoir Simulation demonstrates how production from reservoirs with complex fracture geometries can be modelled efficiently and effectively. This volume presents a conventional numerical model to handle simple and complex fractures using local grid refinement (LGR) and unstructured gridding. Moreover, it introduces an Embedded Discrete Fracture Model (EDFM) to efficiently deal with complex fractures by dividing the fractures into segments using matrix cell boundaries and creating non-neighboring connections (NNCs). A basic EDFM approach using Cartesian grids and advanced EDFM approach using Corner point and unstructured grids will be covered. Embedded Discrete Fracture Modeling and Application in Reservoir Simulation is an essential reference for anyone interested in performing reservoir simulation of conventional and unconventional fractured reservoirs. Highlights the current state-of-the-art in reservoir simulation of unconventional reservoirs Offers understanding of the impacts of key reservoir properties and complex fractures on well performance Provides case studies to show how to use the EDFM method for different needs

Modeling Wettability Alteration in Naturally Fractured Carbonate Reservoirs

Modeling Wettability Alteration in Naturally Fractured Carbonate Reservoirs PDF Author: Ali Goudarzi
Publisher:
ISBN:
Category :
Languages : en
Pages : 180

Book Description
The demand for energy and new oil reservoirs around the world has increased rapidly while oil recovery from depleted reservoirs has become more difficult. Oil production from fractured carbonate reservoirs by water flooding is often inefficient due to the commonly oil-wet nature of matrix rocks. Chemical enhanced oil recovery (EOR) processes such as surfactant-induced wettability alteration and interfacial tension reduction are required to decrease the residual oil saturation in matrix blocks, leading to incremental oil recovery. However, improvement in recovery will depend on the degree of wettability alteration and interfacial tension (IFT) reduction, which in turn are functions of matrix permeability, fracture intensity, temperature, pressure, and fluid properties. The oil recovery from fractured carbonate reservoirs is frequently considered to be dominated by the spontaneous imbibition mechanism which is a combination of viscous, capillary, and gravity forces. The primary purpose of this study is to model wettability alteration in the lab scale for both coreflood and imbibition cell tests using the chemical flooding reservoir simulator. The experimental recovery data for fractured carbonate rocks with different petrophysical properties were history-matched with UTCHEM, The University of Texas in-house compositional chemical flooding simulator, using a highly heterogeneous permeability distribution. Extensive simulation work demonstrates the validity and ranges of applicability of upscaled procedures, and also indicates the importance of viscous and capillary forces in larger fields. The results of this work will be useful for designing field-scale chemical EOR processes.

Naturally Fractured Reservoirs

Naturally Fractured Reservoirs PDF Author: Roberto Aguilera
Publisher: PennWell Books
ISBN:
Category : Science
Languages : en
Pages : 730

Book Description
This book deals exclusively with naturally fractured reservoirs and includes many subjects usually treated in separate volumes. A highly practical edition, Naturally Fractured Reservoirs is written for students, reservoir geologists, log analysts and petroleum engineers.

Simulation of Fluid Flow Mechanisms in High Permeability Zones (Super-K) in a Giant Naturally Fractured Carbonate Reservoir

Simulation of Fluid Flow Mechanisms in High Permeability Zones (Super-K) in a Giant Naturally Fractured Carbonate Reservoir PDF Author: Amer H. Abu-Hassoun
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Fluid flow mechanisms in a large naturally fractured heterogeneous carbonate reservoir were investigated in this manuscript. A very thin layer with high permeability that produces the majority of production from specific wells and is deemed the Super-K Zone was investigated. It is known that these zones are connected to naturally occurring fractures. Fluid flow in naturally fractured reservoirs is a very difficult mechanism to understand. To accomplish this mission, the Super-K Zone and fractures were treated as two systems. Reservoir management practices and decisions should be very carefully reviewed and executed in this dual continuum reservoir based on the results of this work. Studying this dual media flow behavior is vital for better future completion strategies and for enhanced reservoir management decisions. The reservoir geology, Super-K identification and natural fractures literature were reviewed. To understand how fluid flows in such a dual continuum reservoir, a dual permeability simulation model has been studied. Some geological and production iv data were used; however, due to unavailability of some critical values of the natural fractures, the model was assumed hypothetical. A reasonable history match was achieved and was set as a basis of the reservoir model. Several sensitivity studies were run to understand fluid flow behavior and prediction runs were executed to help make completion recommendations for future wells based on the results obtained. Conclusions and recommended completions were highlighted at the end of this research. It was realized that the natural fractures are the main source of premature water breakthrough, and the Super-K acts as a secondary cause of water channeling to the wellbore.

Predicting the Natural State of Fractured Carbonate Reservoirs

Predicting the Natural State of Fractured Carbonate Reservoirs PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 101

Book Description
The power of the reaction, transport, mechanical (RTM) modeling approach is that it directly uses the laws of geochemistry and geophysics to extrapolate fracture and other characteristics from the borehole or surface to the reservoir interior. The objectives of this facet of the project were to refine and test the viability of the basin/reservoir forward modeling approach to address fractured reservoir in E and P problems. The study attempts to resolve the following issues: role of fracturing and timing on present day location and characteristics; clarifying the roles and interplay of flexure dynamics, changing rock rheological properties, fluid pressuring and tectonic/thermal histories on present day reservoir location and characteristics; and test the integrated RTM modeling/geological data approach on a carbonate reservoir. Sedimentary, thermal and tectonic data from Andector Field, West Texas, were used as input to the RTM basin/reservoir simulator to predict its preproduction state. The results were compared with data from producing reservoirs to test the RTM modeling approach. The effects of production on the state of the field are discussed in a companion report. The authors draw the following conclusions: RTM modeling is an important new tool in fractured reservoir E and P analysis; the strong coupling of RTM processes and the geometric and tensorial complexity of fluid flow and stresses require the type of fully coupled, 3-D RTM model for fracture analysis as pioneered in this project; flexure analysis cannot predict key aspects of fractured reservoir location and characteristics; fracture history over the lifetime of a basin is required to understand the timing of petroleum expulsion and migration and the retention properties of putative reservoirs.