Author: Frédérique Battin-Leclerc
Publisher: Springer Science & Business Media
ISBN: 1447153073
Category : Technology & Engineering
Languages : en
Pages : 657
Book Description
This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. Divided into five sections, a broad yet detailed coverage of related research is provided. Beginning with the development of detailed kinetic mechanisms, chapters go on to explore techniques to obtain reliable experimental data, soot and polycyclic aromatic hydrocarbons, mechanism reduction and uncertainty analysis, and elementary reactions. This comprehensive coverage of current research provides a solid foundation for researchers, managers, policy makers and industry operators working in or developing this innovative and globally relevant field.
Cleaner Combustion
Author: Frédérique Battin-Leclerc
Publisher: Springer Science & Business Media
ISBN: 1447153073
Category : Technology & Engineering
Languages : en
Pages : 657
Book Description
This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. Divided into five sections, a broad yet detailed coverage of related research is provided. Beginning with the development of detailed kinetic mechanisms, chapters go on to explore techniques to obtain reliable experimental data, soot and polycyclic aromatic hydrocarbons, mechanism reduction and uncertainty analysis, and elementary reactions. This comprehensive coverage of current research provides a solid foundation for researchers, managers, policy makers and industry operators working in or developing this innovative and globally relevant field.
Publisher: Springer Science & Business Media
ISBN: 1447153073
Category : Technology & Engineering
Languages : en
Pages : 657
Book Description
This overview compiles the on-going research in Europe to enlarge and deepen the understanding of the reaction mechanisms and pathways associated with the combustion of an increased range of fuels. Focus is given to the formation of a large number of hazardous minor pollutants and the inability of current combustion models to predict the formation of minor products such as alkenes, dienes, aromatics, aldehydes and soot nano-particles which have a deleterious impact on both the environment and on human health. Cleaner Combustion describes, at a fundamental level, the reactive chemistry of minor pollutants within extensively validated detailed mechanisms for traditional fuels, but also innovative surrogates, describing the complex chemistry of new environmentally important bio-fuels. Divided into five sections, a broad yet detailed coverage of related research is provided. Beginning with the development of detailed kinetic mechanisms, chapters go on to explore techniques to obtain reliable experimental data, soot and polycyclic aromatic hydrocarbons, mechanism reduction and uncertainty analysis, and elementary reactions. This comprehensive coverage of current research provides a solid foundation for researchers, managers, policy makers and industry operators working in or developing this innovative and globally relevant field.
Combustion Chemistry
Author: W. C. Jr. Gardiner
Publisher: Springer Science & Business Media
ISBN: 1468401866
Category : Science
Languages : en
Pages : 515
Book Description
Detailed study of the rates and mechanisms of combustion reactions has not been in the mainstream of combustion research until the recent recognition that further progress in optimizing burner performance and reducing pollutant emission can only be done with fundamental understanding of combustion chemistry. This has become apparent at a time when our understanding of the chemistry, at least of small-molecule combustion, and our ability to model combustion processes on large computers have developed to the point that real confidence can be placed in the results. This book is an introduction for outsiders or beginners as well as a reference work for people already active in the field. Because the spectrum of combustion scientists ranges from chemists with little computing experience to engineers who have had only one college chemistry course, everything needed to bring all kinds of beginners up to the level of current practice in detailed combustion modeling is included. It was a temptation to include critical discussions of modeling results and computer programs that would enable outsiders to start quickly into problem solving. We elected not to do either, because we feel that the former are better put into the primary research literature and that people who are going to do combustion modeling should either write their own programs or collaborate with experts. The only exception to this is in the thermochemical area, where programs have been included to do routine fitting operations. For reference purposes there are tables of thermochemical, transport-property, and rate coefficient data.
Publisher: Springer Science & Business Media
ISBN: 1468401866
Category : Science
Languages : en
Pages : 515
Book Description
Detailed study of the rates and mechanisms of combustion reactions has not been in the mainstream of combustion research until the recent recognition that further progress in optimizing burner performance and reducing pollutant emission can only be done with fundamental understanding of combustion chemistry. This has become apparent at a time when our understanding of the chemistry, at least of small-molecule combustion, and our ability to model combustion processes on large computers have developed to the point that real confidence can be placed in the results. This book is an introduction for outsiders or beginners as well as a reference work for people already active in the field. Because the spectrum of combustion scientists ranges from chemists with little computing experience to engineers who have had only one college chemistry course, everything needed to bring all kinds of beginners up to the level of current practice in detailed combustion modeling is included. It was a temptation to include critical discussions of modeling results and computer programs that would enable outsiders to start quickly into problem solving. We elected not to do either, because we feel that the former are better put into the primary research literature and that people who are going to do combustion modeling should either write their own programs or collaborate with experts. The only exception to this is in the thermochemical area, where programs have been included to do routine fitting operations. For reference purposes there are tables of thermochemical, transport-property, and rate coefficient data.
Turbulent Combustion Modeling
Author: Tarek Echekki
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Publisher: Springer Science & Business Media
ISBN: 9400704127
Category : Technology & Engineering
Languages : en
Pages : 496
Book Description
Turbulent combustion sits at the interface of two important nonlinear, multiscale phenomena: chemistry and turbulence. Its study is extremely timely in view of the need to develop new combustion technologies in order to address challenges associated with climate change, energy source uncertainty, and air pollution. Despite the fact that modeling of turbulent combustion is a subject that has been researched for a number of years, its complexity implies that key issues are still eluding, and a theoretical description that is accurate enough to make turbulent combustion models rigorous and quantitative for industrial use is still lacking. In this book, prominent experts review most of the available approaches in modeling turbulent combustion, with particular focus on the exploding increase in computational resources that has allowed the simulation of increasingly detailed phenomena. The relevant algorithms are presented, the theoretical methods are explained, and various application examples are given. The book is intended for a relatively broad audience, including seasoned researchers and graduate students in engineering, applied mathematics and computational science, engine designers and computational fluid dynamics (CFD) practitioners, scientists at funding agencies, and anyone wishing to understand the state-of-the-art and the future directions of this scientifically challenging and practically important field.
Combustion
Author: J. Warnatz
Publisher: Springer Science & Business Media
ISBN: 3540453636
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.
Publisher: Springer Science & Business Media
ISBN: 3540453636
Category : Technology & Engineering
Languages : en
Pages : 389
Book Description
This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.
Combustion
Author: J. Warnatz
Publisher: Springer Science & Business Media
ISBN: 3662045087
Category : Science
Languages : en
Pages : 309
Book Description
This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.
Publisher: Springer Science & Business Media
ISBN: 3662045087
Category : Science
Languages : en
Pages : 309
Book Description
This book provides a rigorous treatment of the coupling of chemical reactions and fluid flow. Combustion-specific topics of chemistry and fluid mechanics are considered and tools described for the simulation of combustion processes. This edition is completely restructured. Mathematical Formulae and derivations as well as the space-consuming reaction mechanisms have been replaced from the text to appendix. A new chapter discusses the impact of combustion processes on the atmosphere, the chapter on auto-ignition is extended to combustion in Otto- and Diesel-engines, and the chapters on heterogeneous combustion and on soot formation are heavily revised.
Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion
Author:
Publisher: Elsevier
ISBN: 0128195797
Category : Technology & Engineering
Languages : en
Pages : 1034
Book Description
Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications.
Publisher: Elsevier
ISBN: 0128195797
Category : Technology & Engineering
Languages : en
Pages : 1034
Book Description
Mathematical Modelling of Gas-Phase Complex Reaction Systems: Pyrolysis and Combustion, Volume 45, gives an overview of the different steps involved in the development and application of detailed kinetic mechanisms, mainly relating to pyrolysis and combustion processes. The book is divided into two parts that cover the chemistry and kinetic models and then the numerical and statistical methods. It offers a comprehensive coverage of the theory and tools needed, along with the steps necessary for practical and industrial applications.
Modelling Diesel Combustion
Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313
Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.
Evaluated Kinetic Data for High Temperature Reactions
Author:
Publisher:
ISBN: 9780408703468
Category : Chemical kinetics
Languages : en
Pages :
Book Description
Publisher:
ISBN: 9780408703468
Category : Chemical kinetics
Languages : en
Pages :
Book Description
Soot Formation in Combustion
Author: Henning Bockhorn
Publisher: Springer Science & Business Media
ISBN: 3642851673
Category : Science
Languages : en
Pages : 595
Book Description
Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:
Publisher: Springer Science & Business Media
ISBN: 3642851673
Category : Science
Languages : en
Pages : 595
Book Description
Soot Formation in Combustion represents an up-to-date overview. The contributions trace back to the 1991 Heidelberg symposium entitled "Mechanism and Models of Soot Formation" and have all been reedited by Prof. Bockhorn in close contact with the original authors. The book gives an easy introduction to the field for newcomers, and provides detailed treatments for the specialists. The following list of contents illustrates the topics under review:
Turbulent Combustion
Author: Norbert Peters
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322
Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.
Publisher: Cambridge University Press
ISBN: 1139428063
Category : Science
Languages : en
Pages : 322
Book Description
The combustion of fossil fuels remains a key technology for the foreseeable future. It is therefore important that we understand the mechanisms of combustion and, in particular, the role of turbulence within this process. Combustion always takes place within a turbulent flow field for two reasons: turbulence increases the mixing process and enhances combustion, but at the same time combustion releases heat which generates flow instability through buoyancy, thus enhancing the transition to turbulence. The four chapters of this book present a thorough introduction to the field of turbulent combustion. After an overview of modeling approaches, the three remaining chapters consider the three distinct cases of premixed, non-premixed, and partially premixed combustion, respectively. This book will be of value to researchers and students of engineering and applied mathematics by demonstrating the current theories of turbulent combustion within a unified presentation of the field.