Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California PDF full book. Access full book title Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California by . Download full books in PDF and EPUB format.

Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California

Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 862

Book Description


Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California

Klamath Hydroelectric Project, FERC Project No. 2080-027, Oregon and California PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 862

Book Description


Intelligence Systems in Environmental Management: Theory and Applications

Intelligence Systems in Environmental Management: Theory and Applications PDF Author: Cengiz Kahraman
Publisher: Springer
ISBN: 3319429930
Category : Technology & Engineering
Languages : en
Pages : 468

Book Description
This book offers a comprehensive reference guide to intelligence systems in environmental management. It provides readers with all the necessary tools for solving complex environmental problems, where classical techniques cannot be applied. The respective chapters, written by prominent researchers, explain a wealth of both basic and advanced concepts including ant colony, genetic algorithms, evolutionary algorithms, fuzzy multi-criteria decision making tools, particle swarm optimization, agent-based modelling, artificial neural networks, simulated annealing, Tabu search, fuzzy multi-objective optimization, fuzzy rules, support vector machines, fuzzy cognitive maps, cumulative belief degrees, and many others. To foster a better understanding, all the chapters include relevant numerical examples or case studies. Taken together, they form an excellent reference guide for researchers, lecturers and postgraduate students pursuing research on complex environmental problems. Moreover, by extending all the main aspects of classical environmental solution techniques to its intelligent counterpart, the book presents a dynamic snapshot on the field that is expected to stimulate new directions and stimulate new ideas and developments.

Final Environmental Impact Statement for Hydropower License

Final Environmental Impact Statement for Hydropower License PDF Author:
Publisher:
ISBN:
Category : Environmental impact statements
Languages : en
Pages : 886

Book Description


Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California

Groundwater Simulation and Management Models for the Upper Klamath Basin, Oregon and California PDF Author: Marshall W. Gannett
Publisher:
ISBN:
Category : Groundwater
Languages : en
Pages : 0

Book Description
The upper Klamath Basin encompasses about 8,000 square miles, extending from the Cascade Range east to the Basin and Range geologic province in south-central Oregon and northern California. The geography of the basin is dominated by forested volcanic uplands separated by broad interior basins. Most of the interior basins once held broad shallow lakes and extensive wetlands, but most of these areas have been drained or otherwise modified and are now cultivated. Major parts of the interior basins are managed as wildlife refuges, primarily for migratory waterfowl. The permeable volcanic bedrock of the upper Klamath Basin hosts a substantial regional groundwater system that provides much of the flow to major streams and lakes that, in turn, provide water for wildlife habitat and are the principal source of irrigation water for the basin's agricultural economy. Increased allocation of surface water for endangered species in the past decade has resulted in increased groundwater pumping and growing interest in the use of groundwater for irrigation. The potential effects of increased groundwater pumping on groundwater levels and discharge to springs and streams has caused concern among groundwater users, wildlife and Tribal interests, and State and Federal resource managers. To provide information on the potential impacts of increased groundwater development and to aid in the development of a groundwater management strategy, the U.S. Geological Survey, in collaboration with the Oregon Water Resources Department and the Bureau of Reclamation, has developed a groundwater model that can simulate the response of the hydrologic system to these new stresses. The groundwater model was developed using the U.S. Geological Survey MODFLOW finite-difference modeling code and calibrated using inverse methods to transient conditions from 1989 through 2004 with quarterly stress periods. Groundwater recharge and agricultural and municipal pumping are specified for each stress period. All major streams and most major tributaries for which a substantial part of the flow comes from groundwater discharge are included in the model. Groundwater discharge to agricultural drains, evapotranspiration from aquifers in areas of shallow groundwater, and groundwater flow to and from adjacent basins also are simulated in key areas. The model has the capability to calculate the effects of pumping and other external stresses on groundwater levels, discharge to streams, and other boundary fluxes, such as discharge to drains. Historical data indicate that the groundwater system in the upper Klamath Basin fluctuates in response to decadal climate cycles, with groundwater levels and spring flows rising and declining in response to wet and dry periods. Data also show that groundwater levels fluctuate seasonally and interannually in response to groundwater pumping. The most prominent response is to the marked increase in groundwater pumping starting in 2001. The calibrated model is able to simulate observed decadal-scale climate-driven fluctuations in the groundwater system as well as observed shorter-term pumping-related fluctuations. Example model simulations show that the timing and location of the effects of groundwater pumping vary markedly depending on the pumping location. Pumping from wells close (within a few miles) to groundwater discharge features, such as springs, drains, and certain streams, can affect those features within weeks or months of the onset of pumping, and the impacts can be essentially fully manifested in several years. Simulations indicate that seasonal variations in pumping rates are buffered by the groundwater system, and peak impacts are closer to mean annual pumping rates than to instantaneous rates. Thus, pumping effects are, to a large degree, spread out over the entire year. When pumping locations are distant (more than several miles) from discharge features, the effects take many years or decades to fully impact those features, and much of the pumped water comes from groundwater storage over a broad geographic area even after two decades. Moreover, because the effects are spread out over a broad area, the impacts to individual features are much smaller than in the case of nearby pumping. Simulations show that the discharge features most affected by pumping in the area of the Bureau of Reclamation's Klamath Irrigation Project are agricultural drains, and impacts to other surface-water features are small in comparison. A groundwater management model was developed that uses techniques of constrained optimization along with the groundwater flow model to identify the optimal strategy to meet water user needs while not violating defined constraints on impacts to groundwater levels and streamflows. The coupled groundwater simulation-optimization models were formulated to help identify strategies to meet water demand in the upper Klamath Basin. The models maximize groundwater pumping while simultaneously keeping the detrimental impacts of pumping on groundwater levels and groundwater discharge within prescribed limits. Total groundwater withdrawals were calculated under alternative constraints for drawdown, reductions in groundwater discharge to surface water, and water demand to understand the potential benefits and limitations for groundwater development in the upper Klamath Basin. The simulation-optimization model for the upper Klamath Basin provides an improved understanding of how the groundwater and surface-water system responds to sustained groundwater pumping within the Bureau of Reclamation's Klamath Project. Optimization model results demonstrate that a certain amount of supplemental groundwater pumping can occur without exceeding defined limits on drawdown and stream capture. The results of the different applications of the model demonstrate the importance of identifying constraint limits in order to better define the amount and distribution of groundwater withdrawal that is sustainable.

Modeling Hydrodynamics, Water Temperature, and Water Quality in the Klamath River Upstream of Keno Dam, Oregon, 2006-09

Modeling Hydrodynamics, Water Temperature, and Water Quality in the Klamath River Upstream of Keno Dam, Oregon, 2006-09 PDF Author:
Publisher:
ISBN:
Category : Hydrodynamics
Languages : en
Pages : 70

Book Description
"A hydrodynamic, water temperature, and water-quality model was constructed for a 20-mile reach of the Klamath River downstream of Upper Klamath Lake, from Link River to Keno Dam, for calendar years 2006-09. The two-dimensional, laterally averaged model CE-QUAL-W2 was used to simulate water velocity, ice cover, water temperature, specific conductance, dissolved and suspended solids, dissolved oxygen, total nitrogen, ammonia, nitrate, total phosphorus, orthophosphate, dissolved and particulate organic matter, and three algal groups. The Link-Keno model successfully simulated the most important spatial and temporal patterns in the measured data for this 4-year time period. The model calibration process provided critical insights into water-quality processes and the nature of those inputs and processes that drive water quality in this reach. The model was used not only to reproduce and better understand water-quality conditions that occurred in 2006-09, but also to test several load-reduction scenarios that have implications for future water-resources management in the river basin. The model construction and calibration process provided results concerning water quality and transport in the Link-Keno reach of the Klamath River, ranging from interesting circulation patterns in the Lake Ewauna area to the nature and importance of organic matter and algae. These insights and results include: Modeled segment-average water velocities ranged from near 0.0 to 3.0 ft/s in 2006 through 2009. Travel time through the model reach was about 4 days at 2,000 ft3/s and 12 days at 700 ft3/s flow. Flow direction was aligned with the upstream-downstream channel axis for most of the Link-Keno reach, except for Lake Ewauna. Wind effects were pronounced at Lake Ewauna during low-flow conditions, often with circulation in the form of a gyre that rotated in a clockwise direction when winds were towards the southeast and in a counterclockwise direction when winds were towards the northwest. Water temperatures ranged from near freezing in winter to near 30 °C at some locations and periods in summer; seasonal water temperature patterns were similar at the inflow and outflow. Although vertical temperature stratification was not present at most times and locations, weak stratification could persist for periods up to 1-2 weeks, especially in the downstream parts of the reach. Thermal stratification was important in controlling vertical variations in water quality. The specific conductance, and thus density, of tributaries within the reach usually was higher than that of the river itself, so that inflows tended to sink below the river surface. This was especially notable for inflows from the Klamath Straits Drain, which tended to sink to the bottom of the Klamath River at its confluence and not mix vertically for several miles downstream. The model was able to capture most of the seasonal changes in the algal population by modeling that population with three algal groups: blue-green algae, diatoms, and other algae. The blooms of blue-green algae, consisting mostly of Aphanizomenon flos aquae that entered from Upper Klamath Lake, were dominant, dwarfing the populations of the other two algae groups in summer. A large part of the blue-green algae population that entered this reach from upstream tended to settle out, die, and decompose, especially in the upper part of the Link-Keno reach. Diatoms reached a maximum in spring and other algae in midsummer. Organic matter, occurring in both dissolved and particulate forms, was critical to the water quality of this reach of the Klamath River, and was strongly tied to nutrient and dissolved-oxygen dynamics. Dissolved and particulate organic matter were subdivided into labile (quickly decaying) and refractory (slowing decaying) groups for modeling purposes. The particulate matter in summer, consisting largely of dead blue-green algae, decayed quickly. Consequently, this particulate matter exerted a high oxygen demand over short periods and contributed strongly to low dissolved-oxygen conditions present during summer and fall. Particulate matter in winter and dissolved organic matter throughout the year was largely refractory (slow to decay). The slower decay rate of this refractory material translates to less oxygen demand over short periods, but also will manifest itself as higher oxygen demand downstream of Keno Dam. The decay and settling of algae and particulate organic matter in the upper part of the Link-Keno reach of the Klamath River has important implications for nutrients. Decay releases nitrogen and phosphorus from particulate forms into dissolved forms such as ammonia, which had elevated concentrations in the downstream part of this reach in summer. Dissolved nutrients showed consistent seasonal patterns that were simulated well by the model. Ammonia concentrations were highest in midsummer and winter and lowest in spring. Nitrate concentrations were highest in winter and lowest in summer. Orthophosphorus concentrations were at their maximum in midsummer and lowest in winter. Comparing modeled hourly nutrient loads at the Link River inflow and the Keno Dam outflow, the Link-Keno reach and its tributaries were a source of total nitrogen and total phosphorus to downstream reaches in early spring and a sink in summer. Dissolved-oxygen concentrations were near saturation in winter, but periods of supersaturation could occur in spring and early summer as oxygen was produced by algal photosynthesis. In mid- to late summer, oxygen sources were overwhelmed by oxygen sinks, especially the decay of organic matter in the water column and river bottom. Extensive anoxia occurred during this period. The sediment oxygen demand was dynamic and represented a relatively fast decomposition of materials deposited during that same year. The labile material was eventually exhausted and reaeration from the atmosphere allowed the system to slowly return towards oxygen saturation in fall. The model simulated the general temporal and spatial patterns in dissolved oxygen, although the inclusion of macrophytes and additional information on reaeration processes, organic matter, and algal dynamics could improve the simulation of dissolved oxygen. Calendar years 2007 and 2008 had more extensive datasets than 2006 and 2009. The models built with less extensive input data were still able to reproduce the patterns in the measured data reasonably well. These findings underline the importance of using results from the 2007 and 2008 detailed field data and experimental work to determine robust model rates, stoichiometry relations, and other parameters that can be applied successfully to years with less data and with different conditions. The 2006-09 models were applied to examine the effects of several reduced-loading scenarios consistent with total maximum daily load (TMDL) targets. The water quality of the Link River inflow was modified in one scenario so that it met the in-lake phosphorus targets of the Upper Klamath Lake TMDL. Point and nonpoint sources along the Klamath River were set to be in compliance with their Klamath River TMDL allocations in another scenario. Results from those scenarios indicated that dissolved-oxygen conditions improved the most when Link River loads were reduced; depending on year, average June through October dissolved-oxygen concentrations increased between 1.9 and 3.2 mg/L. Similarly, ammonia concentrations improved the most under this scenario, with an average June through October concentration decrease between 0.20 and 0.34 mg/L. Orthophosphorus concentrations were decreased significantly in both scenarios that reduced concentrations from Link River and scenarios that reduced concentrations from in-reach point and nonpoint sources, with June through October concentration decreases between 0.02 and 0.06 mg/L. The calibrated models are useful tools that reproduce the most important water-quality processes occurring in the Link-Keno reach of the Klamath River. These models are accurate enough to provide insights into the nature of those processes and the probable effects of proposed management and water-quality improvement strategies."--Executive summary.

The Klamath Project

The Klamath Project PDF Author: Eric A. Stene
Publisher:
ISBN:
Category : Dams
Languages : en
Pages : 56

Book Description


Storm Water Management for Construction Activities

Storm Water Management for Construction Activities PDF Author:
Publisher:
ISBN:
Category : Building
Languages : en
Pages : 44

Book Description


Scientific Investigations Report

Scientific Investigations Report PDF Author: Sharon E. Kroening
Publisher:
ISBN:
Category : Earth sciences
Languages : en
Pages : 122

Book Description


Ground-water Hydrology of the Upper Deschutes Basin, Oregon

Ground-water Hydrology of the Upper Deschutes Basin, Oregon PDF Author:
Publisher:
ISBN:
Category : Government publications
Languages : en
Pages : 92

Book Description


Gold districts of California

Gold districts of California PDF Author: William B. Clark
Publisher: William B. Clark
ISBN:
Category : Antiques & Collectibles
Languages : en
Pages : 212

Book Description
Gold districts of California