Modeling Emerging Semiconductor Devices for Circuit Simulation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling Emerging Semiconductor Devices for Circuit Simulation PDF full book. Access full book title Modeling Emerging Semiconductor Devices for Circuit Simulation by Md Sakib Hasan. Download full books in PDF and EPUB format.

Modeling Emerging Semiconductor Devices for Circuit Simulation

Modeling Emerging Semiconductor Devices for Circuit Simulation PDF Author: Md Sakib Hasan
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Book Description
Circuit simulation is an indispensable part of modern IC design. The significant cost of fabrication has driven researchers to verify the chip functionality through simulation before submitting the design for final fabrication. With the impending end of Moore,Äôs Law, researchers all over the world are looking for new devices with enhanced functionality. A plethora of promising emerging devices has been proposed in recent years. In order to leverage the full potential of such devices, circuit designers need fast, reliable models for SPICE simulation to explore different applications. Most of these new devices have complex underlying physical mechanism rendering the model development an extremely challenging task. For the models to be of practical use, they have to enable fast and accurate simulation that rules out the possibility of numerically solving a system of partial differential equations to arrive at a solution. In this chapter, we show how different modeling approaches can be used to simulate three emerging semiconductor devices namely, silicon- on- insulator four gate transistor(G4FET), perimeter gated single photon avalanche diode (PG-SPAD) and insulator-metal transistor (IMT) device with volatile memristance. All the models have been verified against experimental /TCAD data and implemented in commercial circuit simulator.

Modeling Emerging Semiconductor Devices for Circuit Simulation

Modeling Emerging Semiconductor Devices for Circuit Simulation PDF Author: Md Sakib Hasan
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Book Description
Circuit simulation is an indispensable part of modern IC design. The significant cost of fabrication has driven researchers to verify the chip functionality through simulation before submitting the design for final fabrication. With the impending end of Moore,Äôs Law, researchers all over the world are looking for new devices with enhanced functionality. A plethora of promising emerging devices has been proposed in recent years. In order to leverage the full potential of such devices, circuit designers need fast, reliable models for SPICE simulation to explore different applications. Most of these new devices have complex underlying physical mechanism rendering the model development an extremely challenging task. For the models to be of practical use, they have to enable fast and accurate simulation that rules out the possibility of numerically solving a system of partial differential equations to arrive at a solution. In this chapter, we show how different modeling approaches can be used to simulate three emerging semiconductor devices namely, silicon- on- insulator four gate transistor(G4FET), perimeter gated single photon avalanche diode (PG-SPAD) and insulator-metal transistor (IMT) device with volatile memristance. All the models have been verified against experimental /TCAD data and implemented in commercial circuit simulator.

Introduction to Device Modeling and Circuit Simulation

Introduction to Device Modeling and Circuit Simulation PDF Author: Tor A. Fjeldly
Publisher: Wiley-Interscience
ISBN:
Category : Computers
Languages : en
Pages : 440

Book Description
This book is a useful reference for practicing electrical engineers as well as a textbook for a junior/senior or graduate level course in electrical engineering. The authors combine two subjects: device modeling and circuit simulation - by providing a large number of well-prepared examples of circuit simulations immediately following the description of many device models.

Silicon And Beyond: Advanced Device Models And Circuit Simulators

Silicon And Beyond: Advanced Device Models And Circuit Simulators PDF Author: Tor A Fjeldly
Publisher: World Scientific
ISBN: 9814493260
Category : Technology & Engineering
Languages : en
Pages : 188

Book Description
The steady downscaling of device-feature size combined with a rapid increase in circuit complexity as well as the introduction of new device concepts based on non-silicon-material systems poses great challenges for device and circuit designers. One of the major tasks is the development of new and improved device models needed for accurate device and circuit design. Another task is the development of new circuit-simulation tools to handle very large and complex circuits. This book addresses both these issues with up-to-date reviews written by leading experts in the field.The first three chapters of the book discuss advanced device models both for existing technologies and for new, emerging technologies. Among the topics covered are models for MOSFETs, thin-film transitors (TFTs), and compound semiconductor devices, including GaAs HEMTs and HFETs, heterodimensional devices, quantum-tunneling devices, as well as wide-bandgap devices. Chapters 4 and 5 discuss advanced circuit simulators that hold promise for handling circuits of much higher complexity than what is possible for typical state-of-the-art circuit simulators today.

Simulation of Semiconductor Devices and Processes

Simulation of Semiconductor Devices and Processes PDF Author: Siegfried Selberherr
Publisher: Springer Science & Business Media
ISBN: 3709166578
Category : Computers
Languages : en
Pages : 525

Book Description
The "Fifth International Conference on Simulation of Semiconductor Devices and Processes" (SISDEP 93) continues a series of conferences which was initiated in 1984 by K. Board and D. R. J. Owen at the University College of Wales, Swansea, where it took place a second time in 1986. Its organization was succeeded by G. Baccarani and M. Rudan at the University of Bologna in 1988, and W. Fichtner and D. Aemmer at the Federal Institute of Technology in Zurich in 1991. This year the conference is held at the Technical University of Vienna, Austria, September 7 - 9, 1993. This conference shall provide an international forum for the presentation of out standing research and development results in the area of numerical process and de vice simulation. The miniaturization of today's semiconductor devices, the usage of new materials and advanced process steps in the development of new semiconduc tor technologies suggests the design of new computer programs. This trend towards more complex structures and increasingly sophisticated processes demands advanced simulators, such as fully three-dimensional tools for almost arbitrarily complicated geometries. With the increasing need for better models and improved understand ing of physical effects, the Conference on Simulation of Semiconductor Devices and Processes brings together the simulation community and the process- and device en gineers who need reliable numerical simulation tools for characterization, prediction, and development.

Semiconductor Device Modeling with Spice

Semiconductor Device Modeling with Spice PDF Author: Giuseppe Massabrio
Publisher: McGraw Hill Professional
ISBN: 9780071349550
Category : Technology & Engineering
Languages : en
Pages : 500

Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

Analysis and Simulation of Semiconductor Devices

Analysis and Simulation of Semiconductor Devices PDF Author: S. Selberherr
Publisher: Springer Science & Business Media
ISBN: 3709187524
Category : Technology & Engineering
Languages : en
Pages : 308

Book Description
The invention of semiconductor devices is a fairly recent one, considering classical time scales in human life. The bipolar transistor was announced in 1947, and the MOS transistor, in a practically usable manner, was demonstrated in 1960. From these beginnings the semiconductor device field has grown rapidly. The first integrated circuits, which contained just a few devices, became commercially available in the early 1960s. Immediately thereafter an evolution has taken place so that today, less than 25 years later, the manufacture of integrated circuits with over 400.000 devices per single chip is possible. Coincident with the growth in semiconductor device development, the literature concerning semiconductor device and technology issues has literally exploded. In the last decade about 50.000 papers have been published on these subjects. The advent of so called Very-Large-Scale-Integration (VLSI) has certainly revealed the need for a better understanding of basic device behavior. The miniaturization of the single transistor, which is the major prerequisite for VLSI, nearly led to a breakdown of the classical models of semiconductor devices.

Semiconductor Device Modelling

Semiconductor Device Modelling PDF Author: Christopher M. Snowden
Publisher: Springer Science & Business Media
ISBN: 1447110331
Category : Technology & Engineering
Languages : en
Pages : 267

Book Description
Semiconductor device modelling has developed in recent years from being solely the domain of device physicists to span broader technological disciplines involved in device and electronic circuit design and develop ment. The rapid emergence of very high speed, high density integrated circuit technology and the drive towards high speed communications has meant that extremely small-scale device structures are used in contempor ary designs. The characterisation and analysis of these devices can no longer be satisfied by electrical measurements alone. Traditional equivalent circuit models and closed-form analytical models cannot always provide consis tently accurate results for all modes of operation of these very small devices. Furthermore, the highly competitive nature of the semiconductor industry has led to the need to minimise development costs and lead-time associated with introducing new designs. This has meant that there has been a greater demand for models capable of increasing our understanding of how these devices operate and capable of predicting accurate quantitative results. The desire to move towards computer aided design and expert systems has reinforced the need for models capable of representing device operation under DC, small-signal, large-signal and high frequency operation. It is also desirable to relate the physical structure of the device to the electrical performance. This demand for better models has led to the introduction of improved equivalent circuit models and a upsurge in interest in using physical models.

Simulation of Semiconductor Devices and Processes

Simulation of Semiconductor Devices and Processes PDF Author: Heiner Ryssel
Publisher: Springer Science & Business Media
ISBN: 3709166195
Category : Computers
Languages : en
Pages : 515

Book Description
SISDEP ’95 provides an international forum for the presentation of state-of-the-art research and development results in the area of numerical process and device simulation. Continuously shrinking device dimensions, the use of new materials, and advanced processing steps in the manufacturing of semiconductor devices require new and improved software. The trend towards increasing complexity in structures and process technology demands advanced models describing all basic effects and sophisticated two and three dimensional tools for almost arbitrarily designed geometries. The book contains the latest results obtained by scientists from more than 20 countries on process simulation and modeling, simulation of process equipment, device modeling and simulation of novel devices, power semiconductors, and sensors, on device simulation and parameter extraction for circuit models, practical application of simulation, numerical methods, and software.

Mosfet Modeling for VLSI Simulation

Mosfet Modeling for VLSI Simulation PDF Author: Narain Arora
Publisher: World Scientific
ISBN: 9812707581
Category : Technology & Engineering
Languages : en
Pages : 633

Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations. The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.

MOSFET Modeling for Circuit Analysis and Design

MOSFET Modeling for Circuit Analysis and Design PDF Author: Carlos Galup-Montoro
Publisher: World Scientific
ISBN: 9812568107
Category : Technology & Engineering
Languages : en
Pages : 445

Book Description
This is the first book dedicated to the next generation of MOSFET models. Addressed to circuit designers with an in-depth treatment that appeals to device specialists, the book presents a fresh view of compact modeling, having completely abandoned the regional modeling approach.Both an overview of the basic physics theory required to build compact MOSFET models and a unified treatment of inversion-charge and surface-potential models are provided. The needs of digital, analog and RF designers as regards the availability of simple equations for circuit designs are taken into account. Compact expressions for hand analysis or for automatic synthesis, valid in all operating regions, are presented throughout the book. All the main expressions for computer simulation used in the new generation compact models are derived.Since designers in advanced technologies are increasingly concerned with fluctuations, the modeling of fluctuations is strongly emphasized. A unified approach for both space (matching) and time (noise) fluctuations is introduced.