Author: Subhas C. Kundu
Publisher: Elsevier
ISBN: 012818129X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
Modeling Biomaterials
Author: Josef Málek
Publisher: Springer Nature
ISBN: 3030880842
Category : Mathematics
Languages : en
Pages : 281
Book Description
The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.
Publisher: Springer Nature
ISBN: 3030880842
Category : Mathematics
Languages : en
Pages : 281
Book Description
The investigation of the role of mechanical and mechano-chemical interactions in cellular processes and tissue development is a rapidly growing research field in the life sciences and in biomedical engineering. Quantitative understanding of this important area in the study of biological systems requires the development of adequate mathematical models for the simulation of the evolution of these systems in space and time. Since expertise in various fields is necessary, this calls for a multidisciplinary approach. This edited volume connects basic physical, biological, and physiological concepts to methods for the mathematical modeling of various materials by pursuing a multiscale approach, from subcellular to organ and system level. Written by active researchers, each chapter provides a detailed introduction to a given field, illustrates various approaches to creating models, and explores recent advances and future research perspectives. Topics covered include molecular dynamics simulations of lipid membranes, phenomenological continuum mechanics of tissue growth, and translational cardiovascular modeling. Modeling Biomaterials will be a valuable resource for both non-specialists and experienced researchers from various domains of science, such as applied mathematics, biophysics, computational physiology, and medicine.
Biomaterials for 3D Tumor Modeling
Author: Subhas C. Kundu
Publisher: Elsevier
ISBN: 012818129X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
Publisher: Elsevier
ISBN: 012818129X
Category : Technology & Engineering
Languages : en
Pages : 773
Book Description
Biomaterials for 3D Tumor Modeling reviews the fundamentals and most relevant areas of the latest advances of research of 3D cancer models, focusing on biomaterials science, tissue engineering, drug delivery and screening aspects. The book reviews advanced fundamental topics, including the causes of cancer, existing cancer models, angiogenesis and inflammation during cancer progression, and metastasis in 3D biomaterials. Then, the most relevant biomaterials are reviewed, including methods for engineering and fabrication of biomaterials. 3D models for key biological systems and types of cancer are also discussed, including lung, liver, oral, prostate, pancreatic, ovarian, bone and pediatric cancer. This book is suitable for those working in the disciplines of materials science, biochemistry, genetics, molecular biology, drug delivery and regenerative medicine. - Reviews key biomaterials topics, including synthetic biomaterials, hydrogels, e-spun materials and nanoparticles - Provides a comprehensive overview of 3D cancer models for key biological systems and cancer types - Includes an overview of advanced fundamental concepts for an interdisciplinary audience in materials science, biochemistry, regenerative medicine and drug delivery
Biofabrication and 3D Tissue Modeling
Author: Dong-Woo Cho
Publisher: Royal Society of Chemistry
ISBN: 1788011988
Category : Medical
Languages : en
Pages : 369
Book Description
3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field.
Publisher: Royal Society of Chemistry
ISBN: 1788011988
Category : Medical
Languages : en
Pages : 369
Book Description
3D tissue modelling is an emerging field used for the investigation of disease mechanisms and drug development. Integrating physics, chemistry, materials science, and stem cell and biomedical engineering, this book provides a complete foundation to this exciting, and interdisciplinary field.
Dental Biomaterials
Author: R V Curtis
Publisher: Elsevier
ISBN: 1845694244
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
Dental Biomaterials: Imaging, Testing and Modelling reviews the materials used in this important area, their performance and how such performance can be measured and optimised. Chapters review optical and electron microscopy imaging techniques for dental biomaterial interfaces. Specific materials such as dental cements, fibre-reinforced composites, metals and alloys are discussed. There is an analysis of stresses, fracture, wear and ageing in dental biomaterials as well as an evaluation of the performance of dental adhesives and resin-dentin bonds. Chapters also review ways of assessing the performance of dental handpieces, crowns, implants and prosthesies. The book also reviews the use of computer models in such areas as bond strength and shape optimisation of dental restorations.With its distinguished editors and team of experienced contributors DDental Biomaterials: Imaging, Testing and Modelling researchers, materials scientists, engineers and dental practitioners with an essential guide to the use and performance of dental biomaterials. - An essential guide to the use and performance of dental biomaterials - Reviews optical and electron microscopy imaging techniques for dental biomaterial interfaces - Analyses stresses, fracture, wear and ageing in dental biomaterials and evaluates the performance of dental adhesives and resin-dentin bonds
Publisher: Elsevier
ISBN: 1845694244
Category : Technology & Engineering
Languages : en
Pages : 529
Book Description
Dental Biomaterials: Imaging, Testing and Modelling reviews the materials used in this important area, their performance and how such performance can be measured and optimised. Chapters review optical and electron microscopy imaging techniques for dental biomaterial interfaces. Specific materials such as dental cements, fibre-reinforced composites, metals and alloys are discussed. There is an analysis of stresses, fracture, wear and ageing in dental biomaterials as well as an evaluation of the performance of dental adhesives and resin-dentin bonds. Chapters also review ways of assessing the performance of dental handpieces, crowns, implants and prosthesies. The book also reviews the use of computer models in such areas as bond strength and shape optimisation of dental restorations.With its distinguished editors and team of experienced contributors DDental Biomaterials: Imaging, Testing and Modelling researchers, materials scientists, engineers and dental practitioners with an essential guide to the use and performance of dental biomaterials. - An essential guide to the use and performance of dental biomaterials - Reviews optical and electron microscopy imaging techniques for dental biomaterial interfaces - Analyses stresses, fracture, wear and ageing in dental biomaterials and evaluates the performance of dental adhesives and resin-dentin bonds
Silk-Based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine
Author: Subhas C. Kundu
Publisher: Elsevier
ISBN: 0323960162
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
Silk-based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine, Second Edition is a must-have reference, providing comprehensive coverage of silk-based biomaterials and their importance in translational uses and biomedicine. This new edition considers the progress made in the past eight years, featuring many new chapters, including a discussion of cutting-edge fabrication methods and techniques, new and improved blends/composites, and an expanded range of applications in tissue engineering, regenerative and precision medicine. The book holistically reviews the types, structure and properties, processing methods, and specific biomedical applications for silk-based biomaterials. This will be a vital resource for materials and tissue engineering scientists, R&D departments in industry and academia, and academics interested in biomaterials, regenerative, and precision medicine. - Covers all key silk biomaterial types, including mulberry, Bombyx mori and nonmulberry/wild silk protein fibroins, sericins and spider silk, as well as their composite blends and various structures and scaffold platforms - Describes the cutting-edge processing techniques for each silk type, from traditional to nonconventional methods, such as using ionic liquids and engineering nanofibers and other biomedical matrices - Explores a range of applications in tissue engineering and regenerative and precision medicine, including bioprinting, bioelectronics and medical devices
Publisher: Elsevier
ISBN: 0323960162
Category : Technology & Engineering
Languages : en
Pages : 908
Book Description
Silk-based Biomaterials for Tissue Engineering, Regenerative and Precision Medicine, Second Edition is a must-have reference, providing comprehensive coverage of silk-based biomaterials and their importance in translational uses and biomedicine. This new edition considers the progress made in the past eight years, featuring many new chapters, including a discussion of cutting-edge fabrication methods and techniques, new and improved blends/composites, and an expanded range of applications in tissue engineering, regenerative and precision medicine. The book holistically reviews the types, structure and properties, processing methods, and specific biomedical applications for silk-based biomaterials. This will be a vital resource for materials and tissue engineering scientists, R&D departments in industry and academia, and academics interested in biomaterials, regenerative, and precision medicine. - Covers all key silk biomaterial types, including mulberry, Bombyx mori and nonmulberry/wild silk protein fibroins, sericins and spider silk, as well as their composite blends and various structures and scaffold platforms - Describes the cutting-edge processing techniques for each silk type, from traditional to nonconventional methods, such as using ionic liquids and engineering nanofibers and other biomedical matrices - Explores a range of applications in tissue engineering and regenerative and precision medicine, including bioprinting, bioelectronics and medical devices
Introduction to Integrative Engineering
Author: Guigen Zhang
Publisher: CRC Press
ISBN: 1315388456
Category : Health & Fitness
Languages : en
Pages : 424
Book Description
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Publisher: CRC Press
ISBN: 1315388456
Category : Health & Fitness
Languages : en
Pages : 424
Book Description
This textbook is designed for an introductory course at undergraduate and graduate levels for bioengineering students. It provides a systematic way of examining bioengineering problems in a multidisciplinary computational approach. The book introduces basic concepts of multidiscipline-based computational modeling methods, provides detailed step-by-step techniques to build a model with consideration of underlying multiphysics, and discusses many important aspects of a modeling approach including results interpretation, validation, and assessment.
Biomaterials- and Microfluidics-Based Tissue Engineered 3D Models
Author: J. Miguel Oliveira
Publisher: Springer Nature
ISBN: 3030365883
Category : Medical
Languages : en
Pages : 176
Book Description
This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.
Publisher: Springer Nature
ISBN: 3030365883
Category : Medical
Languages : en
Pages : 176
Book Description
This contributed volume reviews the latest advances on relevant 3D tissue engineered in vitro models of disease making use of biomaterials and microfluidics. The main focus of this book is on advanced biomaterials and microfluidics technologies that have been used in in vitro mimetic 3D models of human diseases and show great promise in revolutionizing personalized medicine. Readers will discover important topics involving biomaterials and microfluidics design, advanced processing techniques, and development and validation of organ- and body-on-a-chip models for bone, liver, and cancer research. An in depth discussion of microfabrication methods for microfluidics development is also provided. This work is edited by two truly multidisciplinary scientists and includes important contributions from well-known experts in their fields. The work is written for both early stage and experienced researchers, and well-established scientists enrolled in the fields of biomaterials, microfluidics, and tissue engineering, and is especially suited to those who wish to become acquainted with the principles and latest developments of in vitro models of diseases, such as professionals working in pharma, medicine, and engineering.
Immunomodulatory Biomaterials
Author: Stephen F. Badylak
Publisher: Woodhead Publishing
ISBN: 0128214562
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Biomaterials have existed for millennia as mechanical replacement structures following disease or injury. Biomaterial design has changed markedly from structural support with an "inert immune profile as the primary objective to designs that elicit an integrative local tissue response and a pro-repair immune cell phenotype. Immunomodulatory Biomaterials: Regulating the Immune Response with Biomaterials to Affect Clinical Outcome offers a single, comprehensive reference on biomaterials for modulation of the host response, for materials scientists, tissue engineers and those working in regenerative medicine. This book details methods, materials and strategies designed to regulate the host immune response following surgical implantation and thus facilitate specific local cell infiltration and tissue deposition. There has been a dramatic transformation in our understanding of the role of the immune system, both innate and adaptive; these changes include recognition of the plasticity of immune cells, especially macrophages, cross-talk between the immune system and stem cells, and the necessity for in situ transition between inflammatory and regulatory immune cell phenotypes. The exploitation of these findings and the design and manufacture of new biomaterials is occurring at an astounding pace. There is currently no book directed at the interdisciplinary principles guiding the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response. The challenge for academia, industry, and regulatory agencies to encourage innovation while assuring safety and maximizing efficacy has never been greater. Given the highly interdisciplinary requirements for the design, manufacture and use of immunomodulatory biomaterials, this book will prove a useful single resource across disciplines. - Holistically covers the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response - Provides a single reference for understanding and utilizing the host response in biomaterials design - An international collaboration of leading researchers in the field offering a novel insight into this fast-growing area
Publisher: Woodhead Publishing
ISBN: 0128214562
Category : Technology & Engineering
Languages : en
Pages : 296
Book Description
Biomaterials have existed for millennia as mechanical replacement structures following disease or injury. Biomaterial design has changed markedly from structural support with an "inert immune profile as the primary objective to designs that elicit an integrative local tissue response and a pro-repair immune cell phenotype. Immunomodulatory Biomaterials: Regulating the Immune Response with Biomaterials to Affect Clinical Outcome offers a single, comprehensive reference on biomaterials for modulation of the host response, for materials scientists, tissue engineers and those working in regenerative medicine. This book details methods, materials and strategies designed to regulate the host immune response following surgical implantation and thus facilitate specific local cell infiltration and tissue deposition. There has been a dramatic transformation in our understanding of the role of the immune system, both innate and adaptive; these changes include recognition of the plasticity of immune cells, especially macrophages, cross-talk between the immune system and stem cells, and the necessity for in situ transition between inflammatory and regulatory immune cell phenotypes. The exploitation of these findings and the design and manufacture of new biomaterials is occurring at an astounding pace. There is currently no book directed at the interdisciplinary principles guiding the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response. The challenge for academia, industry, and regulatory agencies to encourage innovation while assuring safety and maximizing efficacy has never been greater. Given the highly interdisciplinary requirements for the design, manufacture and use of immunomodulatory biomaterials, this book will prove a useful single resource across disciplines. - Holistically covers the design, manufacture, testing, and clinical translation of biomaterials that proactively regulate the host tissue immune response - Provides a single reference for understanding and utilizing the host response in biomaterials design - An international collaboration of leading researchers in the field offering a novel insight into this fast-growing area
Biomedical Engineering
Author: W. Mark Saltzman
Publisher: Cambridge University Press
ISBN: 131629868X
Category : Technology & Engineering
Languages : en
Pages : 785
Book Description
The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.
Publisher: Cambridge University Press
ISBN: 131629868X
Category : Technology & Engineering
Languages : en
Pages : 785
Book Description
The second edition of this popular introductory undergraduate textbook uses examples, applications, and profiles of biomedical engineers to show students the relevance of the theory and how it can be used to solve real problems in human medicine. The essential molecular biology, cellular biology, and human physiology background is included for students to understand the context in which biomedical engineers work. Updates throughout highlight important advances made over recent years, including iPS cells, microRNA, nanomedicine, imaging technology, biosensors, and drug delivery systems, giving students a modern description of the various subfields of biomedical engineering. Over two hundred quantitative and qualitative exercises, many new to this edition, help consolidate learning, whilst a solutions manual, password-protected for instructors, is available online. Finally, students can enjoy an expanded set of leader profiles in biomedical engineering within the book, showcasing the broad range of career paths open to students who make biomedical engineering their calling.
Materials for Biomedical Simulation
Author: Arnab Chanda
Publisher: Springer Nature
ISBN: 9819950643
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
The book provides an overview of prospective material simulants for hard tissues, such as knee joints, hip joint, and bones, and soft tissues, such as skin, muscles, and functional organs. These materials can repair, replace the functionality, or mimic the mechanical, structural, and biological properties of the parent tissue. This book discusses hard and soft human tissue simulating biomaterials under a single umbrella, covering a broad area of design and development of biomaterials, implants, and multi-functional materials along with their characterization. The progress in emerging biomaterials has increased manifold in the recent decades with the unprecedented focus on healthcare technologies. This book is dedicated to ground-breaking research in biomaterials and highlights the current trends and future roadmap of different materials for simulation of hard and soft tissues. Authored by prominent researchers around the globe, the chapters of this book emphasize recent advances in biomedical material simulation. This book brings together novel contributions to different aspects of hard and soft human tissue-based biomaterials, including recent advances and emerging developments in designing and developing simulants for tissue replacement alternatives. This book is anticipated to serve as a key reference textbook for research in tissue engineering & biomedical engineering, biomaterials, biomechanics, and implant & medical device development with contributed chapters solicited in the areas of soft materials, such as elastomers, hydrogels, etc., for various applications; auxetic metamaterials; additive manufacturing of bio-implants; artificial tissues and organs; development of biomimetic materials; medical implants and biomedical device design; bioinspired and bio-tribological materials; advances in materials science for biomaterial applications; biomechanical characterization of hard and soft human tissues; bioprinting and nano-biomaterials.
Publisher: Springer Nature
ISBN: 9819950643
Category : Technology & Engineering
Languages : en
Pages : 199
Book Description
The book provides an overview of prospective material simulants for hard tissues, such as knee joints, hip joint, and bones, and soft tissues, such as skin, muscles, and functional organs. These materials can repair, replace the functionality, or mimic the mechanical, structural, and biological properties of the parent tissue. This book discusses hard and soft human tissue simulating biomaterials under a single umbrella, covering a broad area of design and development of biomaterials, implants, and multi-functional materials along with their characterization. The progress in emerging biomaterials has increased manifold in the recent decades with the unprecedented focus on healthcare technologies. This book is dedicated to ground-breaking research in biomaterials and highlights the current trends and future roadmap of different materials for simulation of hard and soft tissues. Authored by prominent researchers around the globe, the chapters of this book emphasize recent advances in biomedical material simulation. This book brings together novel contributions to different aspects of hard and soft human tissue-based biomaterials, including recent advances and emerging developments in designing and developing simulants for tissue replacement alternatives. This book is anticipated to serve as a key reference textbook for research in tissue engineering & biomedical engineering, biomaterials, biomechanics, and implant & medical device development with contributed chapters solicited in the areas of soft materials, such as elastomers, hydrogels, etc., for various applications; auxetic metamaterials; additive manufacturing of bio-implants; artificial tissues and organs; development of biomimetic materials; medical implants and biomedical device design; bioinspired and bio-tribological materials; advances in materials science for biomaterial applications; biomechanical characterization of hard and soft human tissues; bioprinting and nano-biomaterials.