Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-Series Study Site) PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-Series Study Site) PDF full book. Access full book title Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-Series Study Site) by National Aeronautics and Space Adm Nasa. Download full books in PDF and EPUB format.

Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-Series Study Site)

Modeling Biogeochemical-Physical Interactions and Carbon Flux in the Sargasso Sea (Bermuda Atlantic Time-Series Study Site) PDF Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
ISBN: 9781723860836
Category : Science
Languages : en
Pages : 44

Book Description
An ecosystem-carbon cycle model is used to analyze the biogeochemical-physical interactions and carbon fluxes in the Bermuda Atlantic Time-series Study (BATS) site for the period of 1992-1998. The model results compare well with observations (most variables are within 8% of observed values). The sea-air flux ranges from -0.32 to -0.50 mol C/sq m/yr, depending upon the gas transfer algorithm used. This estimate is within the range (-0.22 to -0.83 mol C/sq m/yr) of previously reported values which indicates that the BATS region is a weak sink of atmospheric CO2. The overall carbon balance consists of atmospheric CO2 uptake of 0.3 Mol C/sq m/yr, upward dissolved inorganic carbon (DIC) bottom flux of 1.1 Mol C/sq m/yr, and carbon export of 1.4 mol C/sq m/yr via sedimentation. Upper ocean DIC levels increased between 1992 and 1996 at a rate of approximately 1.2 (micro)mol/kg/yr, consistent with observations. However, this trend was reversed during 1997-1998 to -2.7 (micro)mol/kg/yr in response to hydrographic changes imposed by the El Nino-La Nina transition, which were manifested in the Sargasso Sea by the warmest SST and lowest surface salinity of the period (1992-1998).Signorini, Sergio R. and McClain, Charles R. and Christian, James R.Goddard Space Flight CenterATMOSPHERIC COMPOSITION; BIOGEOCHEMISTRY; CARBON CYCLE; ENVIRONMENT MODELS; ANNUAL VARIATIONS; ALGORITHMS; CARBON DIOXIDE CONCENTRATION; HYDROGRAPHY; SARGASSO SEA; AIR WATER INTERACTIONS; EL NINO; VERTICAL DISTRIBUTION