Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor PDF full book. Access full book title Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor by Md Sakib Hasan. Download full books in PDF and EPUB format.

Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor

Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor PDF Author: Md Sakib Hasan
Publisher:
ISBN:
Category : Electronic circuit design
Languages : en
Pages : 183

Book Description
As the device dimensions have reduced from micrometer to nanometer range, new bulk silicon devices are now facing many undesirable effects of scaling leading device engineers to look for new process technologies. Silicon-on-insulator (SOI) has emerged as a very promising candidate for resolving the major problems plaguing the bulk silicon technology. G4FET [G4FET] is a SOI transistor with four independent gates. Although G4FET has already shown great potential in different applications, the widespread adoption of a technology in circuit design is heavily dependent upon good SPICE (Simulation Program with Integrated Circuit Emphasis) models. CAD (Computer Aided Design) tools are now ubiquitous in circuit design and a fast, robust and accurate SPICE model is absolutely necessary to transform G4FET into a mainstream technology. The research goal is to develop suitable SPICE models for G4FET to aid circuit designers in designing innovative analog and digital circuits using this new transistor. The first phase of this work is numerical modeling of the G4FET where four different numerical techniques are implemented, each with its merits and demerits. The first two methods are based on multivariate Lagrange interpolation and multidimensional Bernstein polynomial. The third numerical technique is based on multivariate regression polynomial to aid modeling with dense gridded data. Another suitable alternative namely multidimensional linear and cubic spline interpolation is explored as the fourth numerical modeling approach to solve some of the problems resulting from single polynomial approximation. The next phase of modeling involves developing a macromodel combining already existing SPICE models of MOSFET (metal-oxide-semiconductor field-effect transistor) and JFET (junction-gate field-effect transistor). This model is easy to implement in circuit simulators and provides good results compared to already demonstrated experimental works with innovative G4FET circuits. The final phase of this work involves the development of a physics-based compact model of G4FET with some empirical fitting parameters. A model for depletion-all-around operation is implemented in circuit simulator based on previous work. Another simplified model, combining MOS and JFET action, is implemented in circuit simulator to model the accumulation mode operation of G4FET.

Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor

Modeling and SPICE Implementation of Silicon-on-insulator (SOI) Four Gate (G4FET) Transistor PDF Author: Md Sakib Hasan
Publisher:
ISBN:
Category : Electronic circuit design
Languages : en
Pages : 183

Book Description
As the device dimensions have reduced from micrometer to nanometer range, new bulk silicon devices are now facing many undesirable effects of scaling leading device engineers to look for new process technologies. Silicon-on-insulator (SOI) has emerged as a very promising candidate for resolving the major problems plaguing the bulk silicon technology. G4FET [G4FET] is a SOI transistor with four independent gates. Although G4FET has already shown great potential in different applications, the widespread adoption of a technology in circuit design is heavily dependent upon good SPICE (Simulation Program with Integrated Circuit Emphasis) models. CAD (Computer Aided Design) tools are now ubiquitous in circuit design and a fast, robust and accurate SPICE model is absolutely necessary to transform G4FET into a mainstream technology. The research goal is to develop suitable SPICE models for G4FET to aid circuit designers in designing innovative analog and digital circuits using this new transistor. The first phase of this work is numerical modeling of the G4FET where four different numerical techniques are implemented, each with its merits and demerits. The first two methods are based on multivariate Lagrange interpolation and multidimensional Bernstein polynomial. The third numerical technique is based on multivariate regression polynomial to aid modeling with dense gridded data. Another suitable alternative namely multidimensional linear and cubic spline interpolation is explored as the fourth numerical modeling approach to solve some of the problems resulting from single polynomial approximation. The next phase of modeling involves developing a macromodel combining already existing SPICE models of MOSFET (metal-oxide-semiconductor field-effect transistor) and JFET (junction-gate field-effect transistor). This model is easy to implement in circuit simulators and provides good results compared to already demonstrated experimental works with innovative G4FET circuits. The final phase of this work involves the development of a physics-based compact model of G4FET with some empirical fitting parameters. A model for depletion-all-around operation is implemented in circuit simulator based on previous work. Another simplified model, combining MOS and JFET action, is implemented in circuit simulator to model the accumulation mode operation of G4FET.

Physics Based Mdeling of Multiple Gate Transistors on Silicon-on-Insulator (SOI)

Physics Based Mdeling of Multiple Gate Transistors on Silicon-on-Insulator (SOI) PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 153

Book Description
G4FET is a novel device built on Silicon-on-Isulator (SOI). Due to the presence of Bulk-Si, it is impossible to have more than one gate for each transistor in conventional process technology. However, it is possible to have multiple gates for each transistor in SOI devices due to the presence of buried oxide, which can be used as an independent gate. Besides the oxide gates, junction gates can also be introduced. Due to the presence of the thin active layer, the junction gate can reach to the bottom and can be used to isolate and control the conduction in the transistors. As a result, the maximum number of gates that can be achieved in SOI is four. A transistor with four gates is called G4FET. G4FET offers all the features of SOI technology. It offers remedies of the drawbacks of Bulk-Si technology. The operation of the multiple gates has applications for mixed-signal circuits, quantum wire, and single transistor multiple gates logic schemes, etc. The research goal is to understand the device physics of G4FET. Understanding device physics will provide enough information to set device parameters to optimize device performances. The operation of semiconductor devices depends on several material parameters, device dimensions and structure. The objective of this research is to develop a model that includes material parameters, device dimensions and structure. The second objective of this research is to develop a numerical model from available data. The numerical model is useful for circuit simulation of G4FET, which provides information about the characteristics of G4FET, when used as a circuit element.

Computational Models in Engineering

Computational Models in Engineering PDF Author: Konstantin Volkov
Publisher: BoD – Books on Demand
ISBN: 1789238692
Category : Computers
Languages : en
Pages : 148

Book Description
The accurate prediction of multi-physical and multi-scale physical/chemical/mechanical processes in engineering remains a challenging problem despite considerable work in this area and the acceptance of finite element analysis and computational fluid dynamics as design tools. This book intends to provide the reader with an overview of the latest developments in computational techniques used in various engineering disciplines. The book includes leading-edge scientific contributions of computational and applied mathematics, computer science and engineering focusing on the modelling and simulation of complex engineering systems and multi-physical/multi-scale engineering problems. The following topics are covered: numerical analysis and algorithms, software development, coupled analysis, multi-criteria optimization as they applied to all kinds of applied and emerging problems in energy systems, additive manufacturing, propulsion systems, and thermal engineering.

Modeling Emerging Semiconductor Devices for Circuit Simulation

Modeling Emerging Semiconductor Devices for Circuit Simulation PDF Author: Md Sakib Hasan
Publisher:
ISBN:
Category : Electronic books
Languages : en
Pages : 0

Book Description
Circuit simulation is an indispensable part of modern IC design. The significant cost of fabrication has driven researchers to verify the chip functionality through simulation before submitting the design for final fabrication. With the impending end of Moore,Äôs Law, researchers all over the world are looking for new devices with enhanced functionality. A plethora of promising emerging devices has been proposed in recent years. In order to leverage the full potential of such devices, circuit designers need fast, reliable models for SPICE simulation to explore different applications. Most of these new devices have complex underlying physical mechanism rendering the model development an extremely challenging task. For the models to be of practical use, they have to enable fast and accurate simulation that rules out the possibility of numerically solving a system of partial differential equations to arrive at a solution. In this chapter, we show how different modeling approaches can be used to simulate three emerging semiconductor devices namely, silicon- on- insulator four gate transistor(G4FET), perimeter gated single photon avalanche diode (PG-SPAD) and insulator-metal transistor (IMT) device with volatile memristance. All the models have been verified against experimental /TCAD data and implemented in commercial circuit simulator.

The modeling of silicon-on-insulator (SOI) MOSFETs for numerical simulation

The modeling of silicon-on-insulator (SOI) MOSFETs for numerical simulation PDF Author: Susan Marie Green
Publisher:
ISBN:
Category :
Languages : en
Pages : 214

Book Description


FinFETs and Other Multi-Gate Transistors

FinFETs and Other Multi-Gate Transistors PDF Author: J.-P. Colinge
Publisher: Springer Science & Business Media
ISBN: 038771751X
Category : Technology & Engineering
Languages : en
Pages : 350

Book Description
This book explains the physics and properties of multi-gate field-effect transistors (MuGFETs), how they are made and how circuit designers can use them to improve the performances of integrated circuits. It covers the emergence of quantum effects due to the reduced size of the devices and describes the evolution of the MOS transistor from classical structures to SOI (silicon-on-insulator) and then to MuGFETs.

Semiconductor Device Modeling with Spice

Semiconductor Device Modeling with Spice PDF Author: Giuseppe Massabrio
Publisher: McGraw Hill Professional
ISBN: 9780071349550
Category : Technology & Engineering
Languages : en
Pages : 500

Book Description
Publisher's Note: Products purchased from Third Party sellers are not guaranteed by the publisher for quality, authenticity, or access to any online entitlements included with the product.

Compact Modeling

Compact Modeling PDF Author: Gennady Gildenblat
Publisher: Springer Science & Business Media
ISBN: 9048186145
Category : Technology & Engineering
Languages : en
Pages : 531

Book Description
Most of the recent texts on compact modeling are limited to a particular class of semiconductor devices and do not provide comprehensive coverage of the field. Having a single comprehensive reference for the compact models of most commonly used semiconductor devices (both active and passive) represents a significant advantage for the reader. Indeed, several kinds of semiconductor devices are routinely encountered in a single IC design or in a single modeling support group. Compact Modeling includes mostly the material that after several years of IC design applications has been found both theoretically sound and practically significant. Assigning the individual chapters to the groups responsible for the definitive work on the subject assures the highest possible degree of expertise on each of the covered models.

STEM Gems

STEM Gems PDF Author: Stephanie Espy
Publisher:
ISBN: 9780997533705
Category :
Languages : en
Pages : 232

Book Description
Tired of seeing the same careers foisted upon women in TV, movies and magazines? Chemical engineer Stephanie Espy, a graduate of MIT, UC Berkeley and Emory University, tells the stories of 44 inspiring women in STEM to show girls and young women around the world a new set of women heroes to look up to.The statistics for women in Science, Technology, Engineering and Mathematics (STEM) careers are just plain sad. In recent years, fewer than 20% of college graduates in engineering and computer science were women. While stereotypes pervade about women in these fields, the truth is that most girls have never even heard of these careers and are not aware of the wide range of options that exist.In STEM Gems, you and your daughter, niece, neighbor, friend or student will discover: The stories of 44 inspiring women in diverse STEM fields and how they made it; The challenges these incredible women faced in pursuit of their dreams; The tremendous accomplishments these Gems have achieved in their respective STEM fields; Advice on how to pursue science, technology, engineering and mathematics careers; Actionable steps girls and young women can take right now to set themselves up for success; What girls and young women can expect in a promising STEM career, and much, much more!Through the powerful stories of the STEM Gems in this book, girls and young women will have their pick of current role models of various ages, ethnicities and job types. And through the eight chapters that outline actionable steps, girls and young women will learn what they can do right now, today, to set themselves up for success and to create their own unique paths. STEM Gems is relatable, encouraging and inspiring, demonstrating the limitless possibilities for the next generation of women.

MOSFET Modeling & BSIM3 User’s Guide

MOSFET Modeling & BSIM3 User’s Guide PDF Author: Yuhua Cheng
Publisher: Springer Science & Business Media
ISBN: 0306470500
Category : Technology & Engineering
Languages : en
Pages : 467

Book Description
Circuit simulation is essential in integrated circuit design, and the accuracy of circuit simulation depends on the accuracy of the transistor model. BSIM3v3 (BSIM for Berkeley Short-channel IGFET Model) has been selected as the first MOSFET model for standardization by the Compact Model Council, a consortium of leading companies in semiconductor and design tools. In the next few years, many fabless and integrated semiconductor companies are expected to switch from dozens of other MOSFET models to BSIM3. This will require many device engineers and most circuit designers to learn the basics of BSIM3. MOSFET Modeling & BSIM3 User's Guide explains the detailed physical effects that are important in modeling MOSFETs, and presents the derivations of compact model expressions so that users can understand the physical meaning of the model equations and parameters. It is the first book devoted to BSIM3. It treats the BSIM3 model in detail as used in digital, analog and RF circuit design. It covers the complete set of models, i.e., I-V model, capacitance model, noise model, parasitics model, substrate current model, temperature effect model and non quasi-static model. MOSFET Modeling & BSIM3 User's Guide not only addresses the device modeling issues but also provides a user's guide to the device or circuit design engineers who use the BSIM3 model in digital/analog circuit design, RF modeling, statistical modeling, and technology prediction. This book is written for circuit designers and device engineers, as well as device scientists worldwide. It is also suitable as a reference for graduate courses and courses in circuit design or device modelling. Furthermore, it can be used as a textbook for industry courses devoted to BSIM3. MOSFET Modeling & BSIM3 User's Guide is comprehensive and practical. It is balanced between the background information and advanced discussion of BSIM3. It is helpful to experts and students alike.