Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits PDF full book. Access full book title Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits by Peter Maurice Lee. Download full books in PDF and EPUB format.

Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits

Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits PDF Author: Peter Maurice Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 432

Book Description


Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits

Modeling and Simulation of Hot-carrier Effects in MOS Devices and Circuits PDF Author: Peter Maurice Lee
Publisher:
ISBN:
Category :
Languages : en
Pages : 432

Book Description


Hot-Carrier Effects in MOS Devices

Hot-Carrier Effects in MOS Devices PDF Author: Eiji Takeda
Publisher: Elsevier
ISBN: 0080926223
Category : Technology & Engineering
Languages : en
Pages : 329

Book Description
The exploding number of uses for ultrafast, ultrasmall integrated circuits has increased the importance of hot-carrier effects in manufacturing as well as for other technological applications. They are rapidly movingout of the research lab and into the real world. This book is derived from Dr. Takedas book in Japanese, Hot-Carrier Effects, (published in 1987 by Nikkei Business Publishers). However, the new book is much more than a translation. Takedas original work was a starting point for developing this much more complete and fundamental text on this increasingly important topic. The new work encompasses not only all the latest research and discoveries made in the fast-paced area of hot carriers, but also includes the basics of MOS devices, and the practical considerations related to hot carriers. Chapter one itself is a comprehensive review of MOS device physics which allows a reader with little background in MOS devices to pick up a sufficient amount of information to be able to follow the rest of the book The book is written to allow the reader to learn about MOS Device Reliability in a relatively short amount of time, making the texts detailed treatment of hot-carrier effects especially useful and instructive to both researchers and others with varyingamounts of experience in the field The logical organization of the book begins by discussing known principles, then progresses to empirical information and, finally, to practical solutions Provides the most complete review of device degradation mechanisms as well as drain engineering methods Contains the most extensive reference list on the subject

Hot Carrier Design Considerations for MOS Devices and Circuits

Hot Carrier Design Considerations for MOS Devices and Circuits PDF Author: Cheng Wang
Publisher: Springer Science & Business Media
ISBN: 1468485474
Category : Science
Languages : en
Pages : 345

Book Description
As device dimensions decrease, hot-carrier effects, which are due mainly to the presence of a high electric field inside the device, are becoming a major design concern. On the one hand, the detrimental effects-such as transconductance degradation and threshold shift-need to be minimized or, if possible, avoided altogether. On the other hand, performance such as the programming efficiency of nonvolatile memories or the carrier velocity inside the devices-need to be maintained or improved through the use of submicron technologies, even in the presence of a reduced power supply. As a result, one of the major challenges facing MOS design engineers today is to harness the hot-carrier effects so that, without sacrificing product performance, degradation can be kept to a minimum and a reli able design obtained. To accomplish this, the physical mechanisms re sponsible for the degradations should first be experimentally identified and characterized. With adequate models thus obtained, steps can be taken to optimize the design, so that an adequate level of quality assur ance in device or circuit performance can be achieved. This book ad dresses these hot-carrier design issues for MOS devices and circuits, and is used primarily as a professional guide for process development engi neers, device engineers, and circuit designers who are interested in the latest developments in hot-carrier degradation modeling and hot-carrier reliability design techniques. It may also be considered as a reference book for graduate students who have some research interests in this excit ing, yet sometime controversial, field.

Hot-Carrier Reliability of MOS VLSI Circuits

Hot-Carrier Reliability of MOS VLSI Circuits PDF Author: Yusuf Leblebici
Publisher: Springer Science & Business Media
ISBN: 1461532507
Category : Technology & Engineering
Languages : en
Pages : 223

Book Description
As the complexity and the density of VLSI chips increase with shrinking design rules, the evaluation of long-term reliability of MOS VLSI circuits is becoming an important problem. The assessment and improvement of reliability on the circuit level should be based on both the failure mode analysis and the basic understanding of the physical failure mechanisms observed in integrated circuits. Hot-carrier induced degrada tion of MOS transistor characteristics is one of the primary mechanisms affecting the long-term reliability of MOS VLSI circuits. It is likely to become even more important in future generation chips, since the down ward scaling of transistor dimensions without proportional scaling of the operating voltage aggravates this problem. A thorough understanding of the physical mechanisms leading to hot-carrier related degradation of MOS transistors is a prerequisite for accurate circuit reliability evaluation. It is also being recognized that important reliability concerns other than the post-manufacture reliability qualification need to be addressed rigorously early in the design phase. The development and use of accurate reliability simulation tools are therefore crucial for early assessment and improvement of circuit reliability : Once the long-term reliability of the circuit is estimated through simulation, the results can be compared with predetermined reliability specifications or limits. If the predicted reliability does not satisfy the requirements, appropriate design modifications may be carried out to improve the resistance of the devices to degradation.

Analysis and Design of MOSFETs

Analysis and Design of MOSFETs PDF Author: Juin Jei Liou
Publisher: Springer Science & Business Media
ISBN: 9780412146015
Category : Science
Languages : en
Pages : 372

Book Description
Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction is the first book devoted entirely to a broad spectrum of analysis and design issues related to the semiconductor device called metal-oxide semiconductor field-effect transistor (MOSFET). These issues include MOSFET device physics, modeling, numerical simulation, and parameter extraction. The discussion of the application of device simulation to the extraction of MOSFET parameters, such as the threshold voltage, effective channel lengths, and series resistances, is of particular interest to all readers and provides a valuable learning and reference tool for students, researchers and engineers. Analysis and Design of MOSFETs: Modeling, Simulation, and Parameter Extraction, extensively referenced, and containing more than 180 illustrations, is an innovative and integral new book on MOSFETs design technology.

Mosfet Modeling For Vlsi Simulation: Theory And Practice

Mosfet Modeling For Vlsi Simulation: Theory And Practice PDF Author: Narain Arora
Publisher: World Scientific
ISBN: 9814365491
Category : Technology & Engineering
Languages : en
Pages : 633

Book Description
A reprint of the classic text, this book popularized compact modeling of electronic and semiconductor devices and components for college and graduate-school classrooms, and manufacturing engineering, over a decade ago. The first comprehensive book on MOS transistor compact modeling, it was the most cited among similar books in the area and remains the most frequently cited today. The coverage is device-physics based and continues to be relevant to the latest advances in MOS transistor modeling. This is also the only book that discusses in detail how to measure device model parameters required for circuit simulations.The book deals with the MOS Field Effect Transistor (MOSFET) models that are derived from basic semiconductor theory. Various models are developed, ranging from simple to more sophisticated models that take into account new physical effects observed in submicron transistors used in today's (1993) MOS VLSI technology. The assumptions used to arrive at the models are emphasized so that the accuracy of the models in describing the device characteristics are clearly understood. Due to the importance of designing reliable circuits, device reliability models are also covered. Understanding these models is essential when designing circuits for state-of-the-art MOS ICs.

MOSFET Models for VLSI Circuit Simulation

MOSFET Models for VLSI Circuit Simulation PDF Author: Narain D. Arora
Publisher: Springer Science & Business Media
ISBN: 3709192471
Category : Computers
Languages : en
Pages : 628

Book Description
Metal Oxide Semiconductor (MOS) transistors are the basic building block ofMOS integrated circuits (I C). Very Large Scale Integrated (VLSI) circuits using MOS technology have emerged as the dominant technology in the semiconductor industry. Over the past decade, the complexity of MOS IC's has increased at an astonishing rate. This is realized mainly through the reduction of MOS transistor dimensions in addition to the improvements in processing. Today VLSI circuits with over 3 million transistors on a chip, with effective or electrical channel lengths of 0. 5 microns, are in volume production. Designing such complex chips is virtually impossible without simulation tools which help to predict circuit behavior before actual circuits are fabricated. However, the utility of simulators as a tool for the design and analysis of circuits depends on the adequacy of the device models used in the simulator. This problem is further aggravated by the technology trend towards smaller and smaller device dimensions which increases the complexity of the models. There is extensive literature available on modeling these short channel devices. However, there is a lot of confusion too. Often it is not clear what model to use and which model parameter values are important and how to determine them. After working over 15 years in the field of semiconductor device modeling, I have felt the need for a book which can fill the gap between the theory and the practice of MOS transistor modeling. This book is an attempt in that direction.

Development of Mosfet Models Suitable for Simulation of Analog CMOS Circuits After Hot-carrier Stress

Development of Mosfet Models Suitable for Simulation of Analog CMOS Circuits After Hot-carrier Stress PDF Author: Gürsel Düzenli
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The down-scaling of device dimensions in CMOS technology will improve performance and packing density for VLSI (Very Large Scale Integration) circuits, but it will negatively effect the quaIity of the circuits. Integrated circuits (ICs) are basically classified according to the electrical function they perform. Integrated circuits performing nominally the same function, however, do not necessarily perform it equally well. The concept of quality is used to express how well the required function is performed. An operational amplifier is of higher quality İf it has a higher gain, wider frequency bandwidth, etc. These characteristics can be regarded as conformance figures. The conformance is, however, only one side of the quality. On the other side is the issue of how Iong the device or circuit will exhibit the initial performance figures. The concept of reliabillty is used to express this time dimension of the quality . Measurement and presentation of the conformance figures are straightforward; any conformance parameter can be measured directly and its value expressed. The situation is, however, different from determination and presentation of the reliability. The reliabilİty depends, in principle, on application conditions, which means it is not possible to establish an exact and unique reliability figure for a given device or IC. In addition, the reliability, determination itself, regardless of the application conditions used, cannot be made by direct measurements. This is mainly because of practical constraints. Theoretically, it is possible to determine the mean time to failure directly if a corresponding number of device or ICs are exposed to working conditions and times to failure of each of them are recorded. This is, however, practically meaningless; such a test would last for tens of years, and by the time the data are collected nobody would be interested in them. That is why accelerated tests have to be applied to obtain the results in a reasonable time of 1 or 2 months. The failures in ICs can be classified in at least three different ways: according to failure modes, according to failure mechanisms, and according to failure causes. The failure mode is the observed result of a failure, such as an open circuit, short circuit, or parameter degradation. The failure mechanism is the phyical, chemical, or other process that results in a failure. Finally , the failure cause is a circumstance during design, production, testing, or operation that initates or contributes to a failure mechanism. The focus of this study is the modeling of parameter degradation reliability of p- MOS and n-MOS transistors due to the hot-carriers under analog operation. Hot- carrier failure cause can initiate the electron/holetrapping/generation and/or interface trap creation mechanism leading to changes of oxide charge and trap densities during device operation. A lot of efforts have been devoted to study the mechanisms due to the hot-carrier and modeling the device degradation due to these effects. However , these modelings are often performed on digital applications. Analog applications differ from digital ones by a number of points. Analog circuit reliability prediction has to take analog circuit design variables such as channel length, biasing conditions, and circuit topography into consideration. In order to achieve highest possible speed, smallest area and smallest power consumption usually L=Lmin are chosen for digital applications. However, for nearly all-analog applications this choice is inadequate. In order to improve matching and noise behavior, channel lengths usually need to be chosen several times Lmin. For those greater lengths also the small-signal parameters especially the drain conductance, are largely improved. However, because analog circuits usually use long-channel devices, the influence of hot-carrier effects on analog circuit performance has been believed to be minimal and, as a result, has been mostly overlooked. Therefore, the most important device parameters in these two application fields do not coincide. For example, power supply scaling for analog circuİts will not likely be as aggressive as for digital circuits, because submicron devices are necessary for high speed applications. However , the operation of analog circuits is sensitive to device parameter variations. Furthermore, device parameter variations depend on the specific application of a given analog circuit. The proposed models combines the advantages of the parameter fitting method and so-called AId model. The essence of the model is the translation of the physical W,mechanisms leading to degradation into the MOSFET model equations correct place via an empirical description. Because of the correct place of the empirical description in the MOSFET model equations the parameter extraction will be as simple as that of the so-called LlIo model. The empirical description was found from different degradations and fresh devices, so the accuracy is as high as that of the parameter fitting method. Furthermore, the general structure of the empirical description is independent of the process technology. Therefore, it does not impose a much higher requirement on device engineer . Another important feature of the proposed models is the prediction of the device lifetime at real life. This is an important feature because most of the developed degradation models are not able to predict the device lifetime. Therefore, several extrapolation laws to calculate the Iifetime have been developed. But, most of the developed lifetime prediction models are developed for digital applications. However, when the same lifetime prediction models are applied to analog applications, gross lifetime prediction error results. This is because the stress conditions are totally different in analog applications compared to digital applications. The proposed model includes a hot-carrier degradation model and a lifetime prediction model as a single model suitable for analog applications. The accuracy of the presented models has been verified with experimental data.

Hot Carrier Degradation in Semiconductor Devices

Hot Carrier Degradation in Semiconductor Devices PDF Author: Tibor Grasser
Publisher: Springer
ISBN: 3319089943
Category : Technology & Engineering
Languages : en
Pages : 518

Book Description
This book provides readers with a variety of tools to address the challenges posed by hot carrier degradation, one of today’s most complicated reliability issues in semiconductor devices. Coverage includes an explanation of carrier transport within devices and book-keeping of how they acquire energy (“become hot”), interaction of an ensemble of colder and hotter carriers with defect precursors, which eventually leads to the creation of a defect, and a description of how these defects interact with the device, degrading its performance.

Modeling and Simulation OfpMOSFET Hot-carrier Degradation in Very Large CMOS Circuits

Modeling and Simulation OfpMOSFET Hot-carrier Degradation in Very Large CMOS Circuits PDF Author: Weishi Sun
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
The goals of the research work presented in this thesis are to model submicron pMOS transistor hot-carrier degradation and to develop a fast reliability simulation tool for hot-carrier reliability analysis of CMOS VLSI circuits. This simulator should be able to handle very large submicrometer circuits accurately and efficiently. As device sizes shrink into the submicron region, pMOS transistor hot-carrier degradation becomes increasingly more important. There has not, however, been a widely accepted model for pMOS transistor hot-carrier degradation unlike that for nMOS transistors. Existing reliability simulations tools are primarily based on transistor level simulation and, therefore, can not handle large circuits efficiently. Using the fast-timing-based reliability simulator, ILLIADS-R, and the empirical model developed based on our experimental results, hot-carrier reliability can be well predicted. ILLIADS-R also serves as an integral part of the hierarchical design-for-reliability system. A new hot-carrier degradation model is developed for submicron pMOS transistors. Using this model, the pMOS transistor hot-carrier degradation can be predicted based on the total injected charge into the gate oxide region and the initial gate current under normal operating condition. This model is integrated into the fast-timing-based reliability simulation tool, ILLIADS-R. The simulation results demonstrate that ILLIADS-R outperforms the existing reliability simulator BERT in terms of simulation speed with a comparable accuracy. Also studied are the pMOS transistor subthreshold leakage characteristics as a function of hot-carrier stress conditions. It is shown that subthreshold leakage current is a future limit to the pMOS device lifetime.