Modeling and Optimization of Natural Gas Processing and Production Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and Optimization of Natural Gas Processing and Production Networks PDF full book. Access full book title Modeling and Optimization of Natural Gas Processing and Production Networks by Saad Alsobhi. Download full books in PDF and EPUB format.

Modeling and Optimization of Natural Gas Processing and Production Networks

Modeling and Optimization of Natural Gas Processing and Production Networks PDF Author: Saad Alsobhi
Publisher:
ISBN:
Category : Gas as fuel
Languages : en
Pages : 159

Book Description
Natural gas is a nonrenewable energy source, so it is important to use it and utilize it in a sustainable manner. Globally, about 25% of energy consumption is supplied and fulfilled by natural gas and this percentage will stay true for the foreseeable future. Today, the fluctuations in commodities prices and demands all necessitate the proper planning and coordination in natural gas industries. Moreover, the strict environmental regulations, continuous advancement in technologies and different customer requirements and specifications, all mandate seeking many pathway options and continuous evaluation of the technologies. Thus, the overall objective of this research is to provide a framework for the design, synthesis, analysis, and planning of a natural gas processing and production networks. The overall framework helps the decision maker in the natural gas industry to evaluate and select optimally the production pathways and utilization options by using the mathematical modeling and optimization techniques in order to maximize the value of natural gas resource. Toward this objective, a novel natural gas network has been synthesized for analysis and optimization. The developed network converts natural gas to LNG, condensate, LPG, gasoline, diesel, wax, and methanol as main products. The contributions of this dissertation fall mainly into three milestones; namely (1) simulation of natural gas network (2) mathematical formulation and optimization of the network and (3) sustainability assessment of the network. The first milestone addresses the rigorous steady state simulation of natural gas network. The simulation of key processing units helped in calculating accurately material and energy balances. Furthermore, the sensitivity analysis or what-if analysis was performed to determine the effect of different operating-parameters on products yield. The second milestone is the comprehensive mathematical formulation and optimization represented by both linear programming (LP) and mixed integer linear programming (MILP) models. Firstly, a deterministic operational LP model has been formulated and implemented on natural gas processing and production networks. Based on the yields obtained from the simulation, LP model was able to tackle different scenarios, such as, variations and fluctuations in natural gas flow rate, natural gas price, products price, and so on. Secondly, a comprehensive MILP model for the optimal design and operation of natural gas processing network was proposed. The MILP model addresses the different technologies and configurations available for the selection of key processing units. Also, it considers the different operating modes practiced in industry in terms of low, moderate, and severe restrictions to the specifications level. Thirdly, another MILP model for the optimal design and operation of natural gas production network has been developed. We were able to address the different routes for natural gas utilization. Finally, the third milestone is the sustainability assessment. The sustainability metrics or indicators were evaluated to investigate the sustainability dimensions and to address the economic, environmental, and societal aspects of the synthesized processing and production networks. The sustainability metrics proved to be useful in selecting pathways that are both economic and environmental friendly.

Modeling and Optimization of Natural Gas Processing and Production Networks

Modeling and Optimization of Natural Gas Processing and Production Networks PDF Author: Saad Alsobhi
Publisher:
ISBN:
Category : Gas as fuel
Languages : en
Pages : 159

Book Description
Natural gas is a nonrenewable energy source, so it is important to use it and utilize it in a sustainable manner. Globally, about 25% of energy consumption is supplied and fulfilled by natural gas and this percentage will stay true for the foreseeable future. Today, the fluctuations in commodities prices and demands all necessitate the proper planning and coordination in natural gas industries. Moreover, the strict environmental regulations, continuous advancement in technologies and different customer requirements and specifications, all mandate seeking many pathway options and continuous evaluation of the technologies. Thus, the overall objective of this research is to provide a framework for the design, synthesis, analysis, and planning of a natural gas processing and production networks. The overall framework helps the decision maker in the natural gas industry to evaluate and select optimally the production pathways and utilization options by using the mathematical modeling and optimization techniques in order to maximize the value of natural gas resource. Toward this objective, a novel natural gas network has been synthesized for analysis and optimization. The developed network converts natural gas to LNG, condensate, LPG, gasoline, diesel, wax, and methanol as main products. The contributions of this dissertation fall mainly into three milestones; namely (1) simulation of natural gas network (2) mathematical formulation and optimization of the network and (3) sustainability assessment of the network. The first milestone addresses the rigorous steady state simulation of natural gas network. The simulation of key processing units helped in calculating accurately material and energy balances. Furthermore, the sensitivity analysis or what-if analysis was performed to determine the effect of different operating-parameters on products yield. The second milestone is the comprehensive mathematical formulation and optimization represented by both linear programming (LP) and mixed integer linear programming (MILP) models. Firstly, a deterministic operational LP model has been formulated and implemented on natural gas processing and production networks. Based on the yields obtained from the simulation, LP model was able to tackle different scenarios, such as, variations and fluctuations in natural gas flow rate, natural gas price, products price, and so on. Secondly, a comprehensive MILP model for the optimal design and operation of natural gas processing network was proposed. The MILP model addresses the different technologies and configurations available for the selection of key processing units. Also, it considers the different operating modes practiced in industry in terms of low, moderate, and severe restrictions to the specifications level. Thirdly, another MILP model for the optimal design and operation of natural gas production network has been developed. We were able to address the different routes for natural gas utilization. Finally, the third milestone is the sustainability assessment. The sustainability metrics or indicators were evaluated to investigate the sustainability dimensions and to address the economic, environmental, and societal aspects of the synthesized processing and production networks. The sustainability metrics proved to be useful in selecting pathways that are both economic and environmental friendly.

Modeling, Control, and Optimization of Natural Gas Processing Plants

Modeling, Control, and Optimization of Natural Gas Processing Plants PDF Author: William A. Poe
Publisher: Gulf Professional Publishing
ISBN: 0128029811
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description
Modeling, Control, and Optimization of Natural Gas Processing Plants presents the latest on the evolution of the natural gas industry, shining a light on the unique challenges plant managers and owners face when looking for ways to optimize plant performance and efficiency, including topics such as the various feed gas compositions, temperatures, pressures, and throughput capacities that keep them looking for better decision support tools. The book delivers the first reference focused strictly on the fast-growing natural gas markets. Whether you are trying to magnify your plants existing capabilities or are designing a new facility to handle more feedstock options, this reference guides you by combining modeling control and optimization strategies with the latest developments within the natural gas industry, including the very latest in algorithms, software, and real-world case studies. Helps users adapt their natural gas plant quickly with optimization strategies and advanced control methods Presents real-world application for gas process operations with software and algorithm comparisons and practical case studies Provides coverage on multivariable control and optimization on existing equipment Allows plant managers and owners the tools they need to maximize the value of the natural gas produced

Process Modeling, Control and Optimization in Gas Processing Industry

Process Modeling, Control and Optimization in Gas Processing Industry PDF Author: William A. Poe
Publisher: Gulf Professional Publishing
ISBN: 9780750684125
Category : Gas industry
Languages : en
Pages : 300

Book Description
Natural gas use is growing rapidly worldwide. There are several reasons the first being that natural gas requires less processing than oil for heating and energy operations. The second is that gas is more environmentally friendly, and finally gas can be transported via a pipeline or in a liquified form as LNG. Because of the demands of this expanding industry, petroleum engineers need a book focusing on the natural gas market, guiding them step-by-step by case studies and practical approaches. The book, Process Modeling, Control and Optimization in the Gas Processing Industry is essential for maximizing process efficiency and profitability in the gas industry. It covers only the critical concepts required to efficiently process and move natural gas from its sources to the consumer. Emphasis is placed on the applications of simulation and optimization to solve real-world problems. Readers are able to use this information to develop and implement advanced control strategies to achieve objectives of throughput maximization, energy minimization, and improved quality control. * Timely book that addresses the enormous industry shift from oil to natural gas * Assumes reader knowledge of fundamentals and focuses strictly on process control applications * Case Studies provide examples of best practice in the field

Natural Gas Processing from Midstream to Downstream

Natural Gas Processing from Midstream to Downstream PDF Author: Nimir O. Elbashir
Publisher: John Wiley & Sons
ISBN: 1119270251
Category : Science
Languages : en
Pages : 584

Book Description
A comprehensive review of the current status and challenges for natural gas and shale gas production, treatment and monetization technologies Natural Gas Processing from Midstream to Downstream presents an international perspective on the production and monetization of shale gas and natural gas. The authors review techno-economic assessments of the midstream and downstream natural gas processing technologies. Comprehensive in scope, the text offers insight into the current status and the challenges facing the advancement of the midstream natural gas treatments. Treatments covered include gas sweeting processes, sulfur recovery units, gas dehydration and natural gas pipeline transportation. The authors highlight the downstream processes including physical treatment and chemical conversion of both direct and indirect conversion. The book also contains an important overview of natural gas monetization processes and the potential for shale gas to play a role in the future of the energy market, specifically for the production of ultra-clean fuels and value-added chemicals. This vital resource: Provides fundamental chemical engineering aspects of natural gas technologies Covers topics related to upstream, midstream and downstream natural gas treatment and processing Contains well-integrated coverage of several technologies and processes for treatment and production of natural gas Highlights the economic factors and risks facing the monetization technologies Discusses supply chain, environmental and safety issues associated with the emerging shale gas industry Identifies future trends in educational and research opportunities, directions and emerging opportunities in natural gas monetization Includes contributions from leading researchers in academia and industry Written for Industrial scientists, academic researchers and government agencies working on developing and sustaining state-of-the-art technologies in gas and fuels production and processing, Natural Gas Processing from Midstream to Downstream provides a broad overview of the current status and challenges for natural gas production, treatment and monetization technologies.

Advances in Natural Gas: Formation, Processing, and Applications. Volume 8: Natural Gas Process Modelling and Simulation

Advances in Natural Gas: Formation, Processing, and Applications. Volume 8: Natural Gas Process Modelling and Simulation PDF Author: Mohammad Reza Rahimpour
Publisher: Elsevier
ISBN: 0443192308
Category : Science
Languages : en
Pages : 776

Book Description
Advances in Natural Gas: Formation, Processing, and Applications is a comprehensive eight-volume set of books that discusses in detail the theoretical basics and practical methods of various aspects of natural gas from exploration and extraction, to synthesizing, processing and purifying, producing valuable chemicals and energy. The volumes introduce transportation and storage challenges as well as hydrates formation, extraction, and prevention Volume 8 titled Process Modelling and Simulation discusses various aspects of natural gas related processes from modelling and simulation point of view. This includes modelling of natural gas sweetening, dehydration and other impurities removal processes and apparatus as well as simulation of processes and apparatus dealt with producing chemicals and energy from natural gas.The book introduces modelling and simulation of natural gas hydrate related processes and covers modelling basics, numerical approaches and optimization techniques, which provides a deeper understanding of the subject. Introduces modelling and simulation methods for natural gas sweetening and purification Describes modelling and simulation procedures of producing chemicals and energy from natural gas Discusses theoretical basics and models of natural gas hydrates

Geometric Modelling, Numerical Simulation, and Optimization:

Geometric Modelling, Numerical Simulation, and Optimization: PDF Author: Geir Hasle
Publisher: Springer Science & Business Media
ISBN: 3540687831
Category : Mathematics
Languages : en
Pages : 559

Book Description
This edited volume addresses the importance of mathematics for industry and society by presenting highlights from contract research at the Department of Applied Mathematics at SINTEF, the largest independent research organization in Scandinavia. Examples range from computer-aided geometric design, via general purpose computing on graphics cards, to reservoir simulation for enhanced oil recovery. Contributions are written in a tutorial style.

Handbook of Natural Gas Transmission and Processing

Handbook of Natural Gas Transmission and Processing PDF Author: Saeid Mokhatab
Publisher: Gulf Professional Publishing
ISBN: 0128158786
Category : Business & Economics
Languages : en
Pages : 862

Book Description
Written by an internationally-recognized team of natural gas industry experts, the fourth edition of Handbook of Natural Gas Transmission and Processing is a unique, well-researched, and comprehensive work on the design and operation aspects of natural gas transmission and processing. Six new chapters have been added to include detailed discussion of the thermodynamic and energy efficiency of relevant processes, and recent developments in treating super-rich gas, high CO2 content gas, and high nitrogen content gas with other contaminants. The new material describes technologies for processing today’s unconventional gases, providing a fresh approach in solving today’s gas processing challenges including greenhouse gas emissions. The updated edition is an excellent platform for gas processors and educators to understand the basic principles and innovative designs necessary to meet today’s environmental and sustainability requirement while delivering acceptable project economics. Covers all technical and operational aspects of natural gas transmission and processing. Provides pivotal updates on the latest technologies, applications, and solutions. Helps to understand today’s natural gas resources, and the best gas processing technologies. Offers design optimization and advice on the design and operation of gas plants.

Optimization of Natural Gas Distribution in Pipeline Networks

Optimization of Natural Gas Distribution in Pipeline Networks PDF Author: Antoine Pruvot
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
In natural gas pipeline transportation systems, network operators play a crucial role. Through compression power and pipeline geometry, they master the physics of the systems, allowing them to control the flow of gas between two points. Their decisions impact the entire production chain, from the suppliers to the consumers. Consequently, the management of pipeline systems requires an in-depth analysis of the influence of each decision. Each pressure change in the system may seriously impact the flow of natural gas, deeply modifying the revenue of the entire production and how it is divided between the different actors of the market. It is fundamental to understand how to master the system in order to control the money generated.From an economic point of view, natural gas pipeline production, transportation and sale creates wealth divided between the different actors in the sector: the profit of the producer, the consumer welfare and a combination of both for the network operator. This social wealth, should be maximized in order to generate the most benefit from the network for society. In order to do so, it is necessary to understand how much gas is flowing through each pipeline. If pressure values are fixed on an arbitrary basis, the dispatch of natural gas in the network will not be optimized. The loss of social wealth generated can be considerable given the important volumes transported through pipeline those days. In the market of natural gas transportation, if the pressure at the nodes is wrongly chosen, it could be disastrous for a company. How could any producing/transporting company avoid wasting this significant amount of money? What are the solutions available for the natural gas pipeline engineers to dispatch natural gas in order to maximize the social wealth generated?This issue can be stated in the corresponding two situations: For the construction of a new pipeline network, how should the geometry of the different pipes be chosen in order to transport natural gas in an optimal way? For an existing pipeline network, how should the pressure drops be chosen to maximize the social wealth of the producing/transporting company?The goal of this study is to provide network operators with the parameters to answer those situations. By fixing the pressure values at the nodes of the system, it is possible to maximize the economic value generated by the natural gas transportation and sales. Additionally, running the simulation on different natural gas network configurations = inform the company on how to choose the ideal geometry factors of each branch of pipeline.Midthun et al. (2009) suggested two different methods to address this problem. The first one, the Independent Static Flow (ISF) method is a straightforward way to find a solution. Neglecting the physics of natural gas, this method assumes that every pipe of the system is running at maximum capacity. The method is very easy to use and implement. Nevertheless, the solution provided is unrealistic: as the physics of natural gas is not respected, it is impossible to practically apply the method on a real network. Hence, this method can only be used to give an idea of how to regulate the flows, and an operator could only try to guess the pressure values at the nodes that could help to get closer this ideal situation on his network. The loss of economic value of natural gas from the arbitrary choices of the operator is a concern. Additionally, the solution arbitrary applied by the operator will generate far less social wealth than the ideal solution given through ISF Method due to the application of the physics of natural gas transportation.To address this issue, the second method proposed by Midthun et al. (2009), the Taylor Development Method, relies on an approximation of the underlying physics to solve for the optimal solution. In order to improve the relevance of the results to the constraints of the pipeline network, Midthun et al. decided to modify the nonlinear constraints of the system, .However, the accuracy of this approach has a price: the more accurate the solution, the more computationally difficult the optimization becomes. Figure 1: The fragile optimum for the Taylor Development MethodFigure 1 illustrates this complex choice. Thus, the user remains struggled in a compromise to find the right equilibrium between quality of the result and time (and so money) of computation. The situation is even worse for large network, as the number of constraining equations greatly increases for each additional pipeline on a network.This compromise between size of network/quality of results on one hand and computational feasibility on the other hand cannot be satisfying. Today, natural gas companies have to deal with networks of several hundred of pipes. An accurate solution would be too hard to solve for, and decreasing the accuracy expectations may cause a large waste of social wealth. In order to avoid this loss, this paper is suggesting another method, based on Ayala et. al.'s (2013) Linear-Pressure Analog Method. Instead of adding extra constraining equations to take account for the nonlinearities of natural gas physics, it is possible to simplify the system. Assuming a linear relationship between natural gas flow rate with respect to pressure drop, the system become smaller and easier to solve. In other words, physics of natural gas is assumed to be similar to the one of laminar liquid flows. From here, a correction is applied to the solution found, taking account for the nonlinearities inherent in real natural gas behavior. The process is iterated until convergence is reached. This method is both feasible and accurate with limited computational demands. Consequently, with any standard computer, a production/transportation company can obtain the ideal and realistic dispatch of natural gas in its network, and optimize the economic value generated by its natural gas transportation.

13th International Symposium on Process Systems Engineering – PSE 2018, July 1-5 2018

13th International Symposium on Process Systems Engineering – PSE 2018, July 1-5 2018 PDF Author: Mario R. Eden
Publisher: Elsevier
ISBN: 0444642420
Category : Technology & Engineering
Languages : en
Pages : 2620

Book Description
Process Systems Engineering brings together the international community of researchers and engineers interested in computing-based methods in process engineering. This conference highlights the contributions of the PSE community towards the sustainability of modern society and is based on the 13th International Symposium on Process Systems Engineering PSE 2018 event held San Diego, CA, July 1-5 2018. The book contains contributions from academia and industry, establishing the core products of PSE, defining the new and changing scope of our results, and future challenges. Plenary and keynote lectures discuss real-world challenges (globalization, energy, environment and health) and contribute to discussions on the widening scope of PSE versus the consolidation of the core topics of PSE. Highlights how the Process Systems Engineering community contributes to the sustainability of modern society Establishes the core products of Process Systems Engineering Defines the future challenges of Process Systems Engineering

Evaluating Gas Network Capacities

Evaluating Gas Network Capacities PDF Author: Thorsten Koch
Publisher: SIAM
ISBN: 1611973694
Category : Mathematics
Languages : en
Pages : 368

Book Description
This book addresses a seemingly simple question: Can a certain amount of gas be transported through a pipeline network? The question is difficult, however, when asked in relation to a meshed nationwide gas transportation network and when taking into account the technical details and discrete decisions, as well as regulations, contracts, and varying demands, involved. This book provides an introduction to the field of gas transportation planning and discusses in detail the advantages and disadvantages of several mathematical models that address gas transport within the context of its technical and regulatory framework, shows how to solve the models using sophisticated mathematical optimization algorithms, and includes examples of large-scale applications of mathematical optimization to this real-world industrial problem. Readers will also find a glossary of gas transport terms, tables listing the physical and technical quantities and constants used throughout the book, and a reference list of regulation and gas business literature.