Author: Gianfranco Capriz
Publisher: Springer Science & Business Media
ISBN: 1461200792
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Soils are complex materials: they have a particulate structure and fluids can seep through pores, mechanically interacting with the solid skeleton. Moreover, at a microscopic level, the behaviour of the solid skeleton is highly unstable. External loadings are in fact taken by grain chains which are continuously destroyed and rebuilt. Many issues of modeling, even of the physical details of the phenomena, remain open, even obscure; de Gennes listed them not long ago in a critical review. However, despite physical complexities, soil mechanics has developed on the assumption that a soil can be seen as a continuum, or better yet as a medium obtained by the superposition of two and sometimes three con and the other fluids, which occupy the same portion of tinua, one solid space. Furthermore, relatively simple and robust constitutive laws were adopted to describe the stress-strain behaviour and the interaction between the solid and the fluid continua. The contrast between the intrinsic nature of soil and the simplistic engi neering approach is self-evident. When trying to describe more and more sophisticated phenomena (static liquefaction, strain localisation, cyclic mo bility, effects of diagenesis and weathering, ..... ), the nalve description of soil must be abandoned or, at least, improved. Higher order continua, incrementally non-linear laws, micromechanical considerations must be taken into account. A new world was opened, where basic mathematical questions (such as the choice of the best tools to model phenomena and the proof of the well-posedness of the consequent problems) could be addressed.
Modeling and Mechanics of Granular and Porous Materials
Author: Gianfranco Capriz
Publisher: Springer Science & Business Media
ISBN: 1461200792
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Soils are complex materials: they have a particulate structure and fluids can seep through pores, mechanically interacting with the solid skeleton. Moreover, at a microscopic level, the behaviour of the solid skeleton is highly unstable. External loadings are in fact taken by grain chains which are continuously destroyed and rebuilt. Many issues of modeling, even of the physical details of the phenomena, remain open, even obscure; de Gennes listed them not long ago in a critical review. However, despite physical complexities, soil mechanics has developed on the assumption that a soil can be seen as a continuum, or better yet as a medium obtained by the superposition of two and sometimes three con and the other fluids, which occupy the same portion of tinua, one solid space. Furthermore, relatively simple and robust constitutive laws were adopted to describe the stress-strain behaviour and the interaction between the solid and the fluid continua. The contrast between the intrinsic nature of soil and the simplistic engi neering approach is self-evident. When trying to describe more and more sophisticated phenomena (static liquefaction, strain localisation, cyclic mo bility, effects of diagenesis and weathering, ..... ), the nalve description of soil must be abandoned or, at least, improved. Higher order continua, incrementally non-linear laws, micromechanical considerations must be taken into account. A new world was opened, where basic mathematical questions (such as the choice of the best tools to model phenomena and the proof of the well-posedness of the consequent problems) could be addressed.
Publisher: Springer Science & Business Media
ISBN: 1461200792
Category : Technology & Engineering
Languages : en
Pages : 374
Book Description
Soils are complex materials: they have a particulate structure and fluids can seep through pores, mechanically interacting with the solid skeleton. Moreover, at a microscopic level, the behaviour of the solid skeleton is highly unstable. External loadings are in fact taken by grain chains which are continuously destroyed and rebuilt. Many issues of modeling, even of the physical details of the phenomena, remain open, even obscure; de Gennes listed them not long ago in a critical review. However, despite physical complexities, soil mechanics has developed on the assumption that a soil can be seen as a continuum, or better yet as a medium obtained by the superposition of two and sometimes three con and the other fluids, which occupy the same portion of tinua, one solid space. Furthermore, relatively simple and robust constitutive laws were adopted to describe the stress-strain behaviour and the interaction between the solid and the fluid continua. The contrast between the intrinsic nature of soil and the simplistic engi neering approach is self-evident. When trying to describe more and more sophisticated phenomena (static liquefaction, strain localisation, cyclic mo bility, effects of diagenesis and weathering, ..... ), the nalve description of soil must be abandoned or, at least, improved. Higher order continua, incrementally non-linear laws, micromechanical considerations must be taken into account. A new world was opened, where basic mathematical questions (such as the choice of the best tools to model phenomena and the proof of the well-posedness of the consequent problems) could be addressed.
Modeling and Mechanics of Granular and Porous Materials
Author: Gianfranco Capriz
Publisher: Birkhauser
ISBN: 9783764342418
Category : Granular materials
Languages : en
Pages : 369
Book Description
"Modeling and Mechanics of Granular and Porous Materials is fairly unique in the literature. It may serve as both an excellent reference text or in seminars, appealing to graduate students, researchers and scientists in applied mathematics, continuum mechanics, finite element methods, solid mechanics, and hydraulics engineering. A good foundation in continuum mechanics is a prerequisite."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
Publisher: Birkhauser
ISBN: 9783764342418
Category : Granular materials
Languages : en
Pages : 369
Book Description
"Modeling and Mechanics of Granular and Porous Materials is fairly unique in the literature. It may serve as both an excellent reference text or in seminars, appealing to graduate students, researchers and scientists in applied mathematics, continuum mechanics, finite element methods, solid mechanics, and hydraulics engineering. A good foundation in continuum mechanics is a prerequisite."--BOOK JACKET.Title Summary field provided by Blackwell North America, Inc. All Rights Reserved
Physics of Dry Granular Media
Author: H.J. Herrmann
Publisher: Springer Science & Business Media
ISBN: 9401726531
Category : Science
Languages : en
Pages : 742
Book Description
Dry granular materials, such as sand, sugar and powders, can be poured into a container like a liquid and can also form a pile, resisting gravity like a solid, which is why they can be regarded as a fourth state of matter, neither solid nor liquid. This book focuses on defining the physics of dry granular media in a systematic way, providing a collection of articles written by recognised experts. The physics of this field is new and full of challenges, but many questions (such as kinetic theories, plasticity, continuum and discrete modelling) also require the strong participation of mechanical and chemical engineers, soil mechanists, geologists and astrophysicists. The book gathers into a single volume the relevant concepts from all these disciplines, enabling the reader to gain a rapid understanding of the foundations, as well as the open questions, of the physics of granular materials. The contributors have been chosen particularly for their ability to explain new concepts, making the book attractive to students or researchers contemplating a foray into the field. The breadth of the treatment, on the other hand, makes the book a useful reference for scientists who are already experienced in the subject.
Publisher: Springer Science & Business Media
ISBN: 9401726531
Category : Science
Languages : en
Pages : 742
Book Description
Dry granular materials, such as sand, sugar and powders, can be poured into a container like a liquid and can also form a pile, resisting gravity like a solid, which is why they can be regarded as a fourth state of matter, neither solid nor liquid. This book focuses on defining the physics of dry granular media in a systematic way, providing a collection of articles written by recognised experts. The physics of this field is new and full of challenges, but many questions (such as kinetic theories, plasticity, continuum and discrete modelling) also require the strong participation of mechanical and chemical engineers, soil mechanists, geologists and astrophysicists. The book gathers into a single volume the relevant concepts from all these disciplines, enabling the reader to gain a rapid understanding of the foundations, as well as the open questions, of the physics of granular materials. The contributors have been chosen particularly for their ability to explain new concepts, making the book attractive to students or researchers contemplating a foray into the field. The breadth of the treatment, on the other hand, makes the book a useful reference for scientists who are already experienced in the subject.
Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics
Author: Francois Nicot
Publisher: Elsevier
ISBN: 0081025963
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale
Publisher: Elsevier
ISBN: 0081025963
Category : Technology & Engineering
Languages : en
Pages : 388
Book Description
Advances in Multi-Physics and Multi-Scale Couplings in Geo-Environmental Mechanics reunites some of the most recent work from the French research group MeGe GDR (National Research Group on Multiscale and Multiphysics Couplings in Geo-Environmental Mechanics) on the theme of multi-scale and multi-physics modeling of geomaterials, with a special focus on micromechanical aspects. Its offers readers a glimpse into the current state of scientific knowledge in the field, together with the most up-to-date tools and methods of analysis available. Each chapter represents a study with a different viewpoint, alternating between phenomenological/micro-mechanically enriched and purely micromechanical approaches. Throughout the book, contributing authors will highlight advances in geomaterials modeling, while also pointing out practical implications for engineers. Topics discussed include multi-scale modeling of cohesive-less geomaterials, including multi-physical processes, but also the effects of particle breakage, large deformations on the response of the material at the specimen scale and concrete materials, together with clays as cohesive geomaterials. The book concludes by looking at some engineering problems involving larger scales. - Identifies contributions in the field of geomechanics - Focuses on multi-scale linkages at small scales - Presents numerical simulations by discrete elements and tools of homogenization or change of scale
Unified Strength Theory and Its Applications
Author: Mao-Hong Yu
Publisher: Springer Science & Business Media
ISBN: 9783540437215
Category : Science
Languages : en
Pages : 440
Book Description
It has been ten years since I presented the paper entitled “A new model and theory on yield and failure of materials under the complex stress state” at the Sixth Conference on Mechanical Behaviour of Materials held at Kyoto, Japan in 1991. The proceedings edited by Jono and Inoue were published by Pergamon Press in 1991. At that conference Professor Murakami and I were invited to act as the chairperson and co-chairperson of a session, and I presented the paper at another session. Few days before the conference, I had given a seminar regarding the tw- shear strength theory and the unified strength theory at Nagoya Technological University. These were the first two presentations of the unified strength theory, although I had completed the research of the unified strength theory in 1990. The paper “Twin-shear strength theory and its generalization” was published in the English edition of Sciences in China, the top journal in China, in 1985. The th original generalized twin-shear strength theory was presented at the 16 International Theoretical and Applied Mechanics Congress held at Copenhagen in Denmark and MPA (MaterialPrüfungsAnstalt) at Stuttgart University, Germany in 1984. After this Congress I visited the MPA and School of Civil Engineering of Stuttgart University, and gave a seminar regarding the generalized twin-shear strength theory at MPA of Stuttgart University. Professor Otto Mohr (1835–1918) has had worked at the Stuttgart University. He was a very good professor, his lectures aroused great interest in his students.
Publisher: Springer Science & Business Media
ISBN: 9783540437215
Category : Science
Languages : en
Pages : 440
Book Description
It has been ten years since I presented the paper entitled “A new model and theory on yield and failure of materials under the complex stress state” at the Sixth Conference on Mechanical Behaviour of Materials held at Kyoto, Japan in 1991. The proceedings edited by Jono and Inoue were published by Pergamon Press in 1991. At that conference Professor Murakami and I were invited to act as the chairperson and co-chairperson of a session, and I presented the paper at another session. Few days before the conference, I had given a seminar regarding the tw- shear strength theory and the unified strength theory at Nagoya Technological University. These were the first two presentations of the unified strength theory, although I had completed the research of the unified strength theory in 1990. The paper “Twin-shear strength theory and its generalization” was published in the English edition of Sciences in China, the top journal in China, in 1985. The th original generalized twin-shear strength theory was presented at the 16 International Theoretical and Applied Mechanics Congress held at Copenhagen in Denmark and MPA (MaterialPrüfungsAnstalt) at Stuttgart University, Germany in 1984. After this Congress I visited the MPA and School of Civil Engineering of Stuttgart University, and gave a seminar regarding the generalized twin-shear strength theory at MPA of Stuttgart University. Professor Otto Mohr (1835–1918) has had worked at the Stuttgart University. He was a very good professor, his lectures aroused great interest in his students.
Micro to MACRO Mathematical Modelling in Soil Mechanics
Author: Pasquale Giovine
Publisher: Springer
ISBN: 3319994743
Category : Mathematics
Languages : en
Pages : 407
Book Description
This special issue collects selected contributions (excluding general lectures) of a Symposium on "Micro to MACRO Mathematical Modelling in Soil Mechanics", which took place at the University of Reggio Calabria, Italy, from May 29th to June 1st, 2018. The Symposium provided an opportunity to enhance the scientific debate on the construction of mathematical models for the description of the physical behaviour of soils, as well as on the suggestions provided by the micro-mechanical observation of the matter. The focus was on the comparison between the appropriateness of models and the need of mathematics to obtain rigorous results, which involves know-how from applied mathematical physics, geotechnical engineering and mechanics of solids. The contributions were selected by the Editors and the other Members of the Scientific Committee of the Symposium: Gianfranco Capriz (Pisa, Roma), Claudio di Prisco (Milan), Wolfgang Ehlers (Stuttgart), James T. Jenkins (Cornell), Stefan Luding (Twente), David Muir Wood (Dundee), Kenichi Soga (Berkeley).
Publisher: Springer
ISBN: 3319994743
Category : Mathematics
Languages : en
Pages : 407
Book Description
This special issue collects selected contributions (excluding general lectures) of a Symposium on "Micro to MACRO Mathematical Modelling in Soil Mechanics", which took place at the University of Reggio Calabria, Italy, from May 29th to June 1st, 2018. The Symposium provided an opportunity to enhance the scientific debate on the construction of mathematical models for the description of the physical behaviour of soils, as well as on the suggestions provided by the micro-mechanical observation of the matter. The focus was on the comparison between the appropriateness of models and the need of mathematics to obtain rigorous results, which involves know-how from applied mathematical physics, geotechnical engineering and mechanics of solids. The contributions were selected by the Editors and the other Members of the Scientific Committee of the Symposium: Gianfranco Capriz (Pisa, Roma), Claudio di Prisco (Milan), Wolfgang Ehlers (Stuttgart), James T. Jenkins (Cornell), Stefan Luding (Twente), David Muir Wood (Dundee), Kenichi Soga (Berkeley).
Numerical Models in Geomechanics
Author: G.N. Pande
Publisher: CRC Press
ISBN: 9789058096364
Category : Technology & Engineering
Languages : en
Pages : 760
Book Description
Reflecting the current research and advances made in the application of numerical methods in geotechnical engineering, this volume details proceedings of the Ninth International Symposium on 'Numerical Models in Geomechanics - NUMOG IX' held in Ottawa, Canada, 25-27 August 2004. Highlighting a number of new developments in the area, papers concentrate upon the following four main areas: * constitutive relations for geomaterials * numerical algorithms: formulation and performance * modelling of transient, coupled and dynamic problems * application of numerical techniques to practical problems. Representing the most advanced, modern findings in the field, Numerical Models in Geomechanics is a comprehensive and impeccably-researched text, ideal for students and researchers as well as practising engineers.
Publisher: CRC Press
ISBN: 9789058096364
Category : Technology & Engineering
Languages : en
Pages : 760
Book Description
Reflecting the current research and advances made in the application of numerical methods in geotechnical engineering, this volume details proceedings of the Ninth International Symposium on 'Numerical Models in Geomechanics - NUMOG IX' held in Ottawa, Canada, 25-27 August 2004. Highlighting a number of new developments in the area, papers concentrate upon the following four main areas: * constitutive relations for geomaterials * numerical algorithms: formulation and performance * modelling of transient, coupled and dynamic problems * application of numerical techniques to practical problems. Representing the most advanced, modern findings in the field, Numerical Models in Geomechanics is a comprehensive and impeccably-researched text, ideal for students and researchers as well as practising engineers.
Porous Media
Author: Wolfgang Ehlers
Publisher: Springer Science & Business Media
ISBN: 3662049996
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics". These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc).
Publisher: Springer Science & Business Media
ISBN: 3662049996
Category : Technology & Engineering
Languages : en
Pages : 459
Book Description
The present volume offers a state-of-the-art report on the various recent sci entific developments in the Theory of Porous Media (TPM) comprehending the basic theoretical concepts in continuum mechanics on porous and mul tiphasic materials as well as the wide range of experimental and numerical applications. Following this, the volume does not only address the sophisti cated reader but also the interested beginner in the area of Porous Media by presenting a collection of articles. These articles written by experts in the field concern the fundamental approaches to multiphasic and porous materials as well as various applications to engineering problems. In many branches of engineering just as in applied natural sciences like bio- and chemomechanics, one often has to deal with continuum mechanical problems which cannot be uniquely classified within the well-known disci plines of either "solid mechanics" or "fluid mechanics". These problems, characterized by the fact that they require a unified treatment of volumetri cally coupled solid-fluid aggregates; basically fall into the categories of either mixtures or porous media. Following this, there is a broad variety of problems ranging in this category as for example the investigation of reacting fluid mix tures or solid-fluid suspensions as well as the investigation of the coupled solid deformation and pore-fluid flow behaviour of liquid- and gas-saturated porous solid skeleton materials like geomaterials (soil, rock, concrete, etc. ), polymeric and metallic foams or biomaterials (hard and soft tissues, etc).
Continuous Media with Microstructure
Author: Bettina Albers
Publisher: Springer Science & Business Media
ISBN: 3642114458
Category : Science
Languages : en
Pages : 384
Book Description
This book discusses the extension of classical continuum models. To the first class addressed belong various thermodynamic models of multicomponent systems, and to the second class belong primarily microstructures created by phase transformations.
Publisher: Springer Science & Business Media
ISBN: 3642114458
Category : Science
Languages : en
Pages : 384
Book Description
This book discusses the extension of classical continuum models. To the first class addressed belong various thermodynamic models of multicomponent systems, and to the second class belong primarily microstructures created by phase transformations.