Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators PDF full book. Access full book title Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators by . Download full books in PDF and EPUB format.

Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators

Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Accurate oscillator phase-noise simulation is a key problem in MMIC design, which is not solved satisfactory so far and needs further investigation. In this paper, a Ka-band MMIC oscillator with GaInP/GaAs HBT and on-chip resonator is treated as an example. Measured phase noise reaches -90 dBc/Hz and below at 100 kHz offset. To evaluate phase-noise predic-tion, the circuit is simulated using different commercial simulation tools and HBT models. Con-siderable differences in simulation results are observed.

Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators

Modeling and Measurement of Phase Noise in GaAs HBT Ka-Band Oscillators PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
Accurate oscillator phase-noise simulation is a key problem in MMIC design, which is not solved satisfactory so far and needs further investigation. In this paper, a Ka-band MMIC oscillator with GaInP/GaAs HBT and on-chip resonator is treated as an example. Measured phase noise reaches -90 dBc/Hz and below at 100 kHz offset. To evaluate phase-noise predic-tion, the circuit is simulated using different commercial simulation tools and HBT models. Con-siderable differences in simulation results are observed.

The Design of Modern Microwave Oscillators for Wireless Applications

The Design of Modern Microwave Oscillators for Wireless Applications PDF Author: Ulrich L. Rohde
Publisher: John Wiley & Sons
ISBN: 0471727164
Category : Technology & Engineering
Languages : en
Pages : 543

Book Description
Delivering the best possible solution for phase noise and outputpower efficiency in oscillators This complete and thorough analysis of microwave oscillatorsinvestigates all aspects of design, with particular emphasis onoperating conditions, choice of resonators and transistors, phasenoise, and output power. It covers both bipolar transistors andFETs. Following the authors' guidance, readers learn how to designmicrowave oscillators and VCOs that can be tuned over a very widefrequency range, yet have good phase noise, are low cost, and aresmall in size. All the essential topics in oscillator design anddevelopment are covered, including: * Device and resonator technology * Study of noise sources * Analysis methods * Design, calculation, and optimization methodologies * Practical design of single and coupled oscillators While most of the current literature in the field concentrates onclassic design strategies based on measurements, simulation, andoptimization of output power and phase noise, this text offers aunique approach that focuses on the complete understanding of thedesign process. The material demonstrates important design rulesstarting with the selection of best oscillator topology, choice oftransistors, and complete phase noise analysis that leads tooptimum performance of all relevant oscillator features. Alsoincluded are CMOS oscillators, which recently have become importantin cellular applications. For readers interested in specializedapplications and topics, a full chapter provides all the necessaryreferences. The contents of the text fall into two major categories: * Chapters 1 through 9 deal with a very detailed and expandedsingle resonator oscillator, including a thorough treatment of bothnonlinear analysis and phase noise * Chapters 10 and 11 use the knowledge obtained and apply it tomultiple coupled oscillators (synchronized oscillators) This text is partially based on research sponsored by the DefenseAdvanced Research Projects Agency (DARPA) and the United StatesArmy and conducted by Synergy Microwave Corporation. With thewealth of information provided for the analysis and practicaldesign of single and synchronized low-noise microwave oscillators,it is recommended reading for all RF microwave engineers. Inaddition, the text's comprehensive, step-by-step approach makes itan excellent graduate-level textbook.

Microwave Circuit Design Using Linear and Nonlinear Techniques

Microwave Circuit Design Using Linear and Nonlinear Techniques PDF Author: George D. Vendelin
Publisher: John Wiley & Sons
ISBN: 1119741696
Category : Technology & Engineering
Languages : en
Pages : 1200

Book Description
Four leaders in the field of microwave circuit design share their newest insights into the latest aspects of the technology The third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques delivers an insightful and complete analysis of microwave circuit design, from their intrinsic and circuit properties to circuit design techniques for maximizing performance in communication and radar systems. This new edition retains what remains relevant from previous editions of this celebrated book and adds brand-new content on CMOS technology, GaN, SiC, frequency range, and feedback power amplifiers in the millimeter range region. The third edition contains over 200 pages of new material. The distinguished engineers, academics, and authors emphasize the commercial applications in telecommunications and cover all aspects of transistor technology. Software tools for design and microwave circuits are included as an accompaniment to the book. In addition to information about small and large-signal amplifier design and power amplifier design, readers will benefit from the book’s treatment of a wide variety of topics, like: An in-depth discussion of the foundations of RF and microwave systems, including Maxwell’s equations, applications of the technology, analog and digital requirements, and elementary definitions A treatment of lumped and distributed elements, including a discussion of the parasitic effects on lumped elements Descriptions of active devices, including diodes, microwave transistors, heterojunction bipolar transistors, and microwave FET Two-port networks, including S-Parameters from SPICE analysis and the derivation of transducer power gain Perfect for microwave integrated circuit designers, the third edition of Microwave Circuit Design Using Linear and Nonlinear Techniques also has a place on the bookshelves of electrical engineering researchers and graduate students. It’s comprehensive take on all aspects of transistors by world-renowned experts in the field places this book at the vanguard of microwave circuit design research.

A Guide to Noise in Microwave Circuits

A Guide to Noise in Microwave Circuits PDF Author: Peter Heymann
Publisher: John Wiley & Sons
ISBN: 1119859387
Category : Technology & Engineering
Languages : en
Pages : 516

Book Description
A GUIDE TO NOISE IN MICROWAVE CIRCUITS A fulsome exploration of critical considerations in microwave circuit noise In A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement, a team of distinguished researchers deliver a comprehensive introduction to noise in microwave circuits, with a strong focus on noise characterization of devices and circuits. The book describes fluctuations beginning with their physical origin and touches on the general description of noise in linear and non-linear circuits. Several chapters are devoted to the description of noise measurement techniques and the interpretation of measured data. A full chapter is dedicated to noise sources as well, including thermal, shot, plasma, and current. A Guide to Noise in Microwave Circuits offers examples of measurement problems—like low noise block (LNB) of satellite television – and explores equipment and measurement methods, like the Y, cold source, and 7-state method. This book also includes: A thorough introduction to foundational terms in microwave circuit noise, including average values, amplitude distribution, autocorrelation, cross-correlation, and noise spectra Comprehensive explorations of common noise sources, including thermal noise, the Nyquist formula and thermal radiation, shot noise, plasma noise, and more Practical discussions of noise and linear networks, including narrowband noise In-depth examinations of calculation methods for noise quantities, including noise voltages, currents, and spectra, the noise correlation matrix, and the noise of simple passive networks Perfect for graduate students specializing in microwave and wireless electronics, A Guide to Noise in Microwave Circuits: Devices, Circuits, and Measurement will also earn a place in the libraries of professional engineers working in microwave or wireless circuits and system design.

Microwave and Wireless Synthesizers

Microwave and Wireless Synthesizers PDF Author: Ulrich L. Rohde
Publisher: John Wiley & Sons
ISBN: 1119666007
Category : Technology & Engineering
Languages : en
Pages : 818

Book Description
The new edition of the leading resource on designing digital frequency synthesizers from microwave and wireless applications, fully updated to reflect the most modern integrated circuits and semiconductors Microwave and Wireless Synthesizers: Theory and Design, Second Edition, remains the standard text on the subject by providing complete and up-to-date coverage of both practical and theoretical aspects of modern frequency synthesizers and their components. Featuring contributions from leading experts in the field, this classic volume describes loop fundamentals, noise and spurious responses, special loops, loop components, multiloop synthesizers, and more. Practical synthesizer examples illustrate the design of a high-performance hybrid synthesizer and performance measurement techniques—offering readers clear instruction on the various design steps and design rules. The second edition includes extensively revised content throughout, including a modern approach to dealing with the noise and spurious response of loops and updated material on digital signal processing and architectures. Reflecting today's technology, new practical and validated examples cover a combination of analog and digital synthesizers and hybrid systems. Enhanced and expanded chapters discuss implementations of direct digital synthesis (DDS) architectures, the voltage-controlled oscillator (VCO), crystal and other high-Q based oscillators, arbitrary waveform generation, vector signal generation, and other current tools and techniques. Now requiring no additional literature to be useful, this comprehensive, one-stop resource: Provides a fully reviewed, updated, and enhanced presentation of microwave and wireless synthesizers Presents a clear mathematical method for designing oscillators for best noise performance at both RF and microwave frequencies Contains new illustrations, figures, diagrams, and examples Includes extensive appendices to aid in calculating phase noise in free-running oscillators, designing VHF and UHF oscillators with CAD software, using state-of-the-art synthesizer chips, and generating millimeter wave frequencies using the delay line principle Containing numerous designs of proven circuits and more than 500 relevant citations from scientific journal and papers, Microwave and Wireless Synthesizers: Theory and Design, Second Edition, is a must-have reference for engineers working in the field of radio communication, and the perfect textbook for advanced electrical engineering students.

Phase Noise in Signal Sources

Phase Noise in Signal Sources PDF Author: W. P. Robins
Publisher: IET
ISBN: 9780863410260
Category : Technology & Engineering
Languages : en
Pages : 340

Book Description
This book contains a thorough treatment of phase noise, its relationship to thermal noise and associated subjects such as frequency stability. The design of low phase noise signal sources, including oscillators and synthesisers, is explained and in many cases the measured phase noise characteristics are compared with the theoretical predictions. Full theoretical treatments are combined with physical explanations, helpful comments, examples of manufactured equipment and practical tips. Overall system performance degradations due to unwanted phase noise are fully analysed for radar systems and for both analogue and digital communications systems. Specifications for the acceptable phase noise performance of signal sources to be used in such systems are derived after allowing for both technical and economic optimisation. The mature engineer whose mathematics may be somewhat rusty will find that every effort has been made to use the lowest level of mathematical sophistication that is compatible with a full analysis and every line of each mathematical argument has been set out so that the book may be read and understood even in an armchair. Due to a novel approach to the analytical treatment of narrow band noise, the book is simple to understand while simultaneously carrying the analysis further in several areas than any existing publication.

RF and Microwave Circuits, Measurements, and Modeling

RF and Microwave Circuits, Measurements, and Modeling PDF Author: Mike Golio
Publisher: CRC Press
ISBN: 1420006703
Category : Technology & Engineering
Languages : en
Pages : 772

Book Description
Highlighting the challenges RF and microwave circuit designers face in their day-to-day tasks, RF and Microwave Circuits, Measurements, and Modeling explores RF and microwave circuit designs in terms of performance and critical design specifications. The book discusses transmitters and receivers first in terms of functional circuit block and then examines each block individually. Separate articles consider fundamental amplifier issues, low noise amplifiers, power amplifiers for handset applications and high power, power amplifiers. Additional chapters cover other circuit functions including oscillators, mixers, modulators, phase locked loops, filters and multiplexers. New chapters discuss high-power PAs, bit error rate testing, and nonlinear modeling of heterojunction bipolar transistors, while other chapters feature new and updated material that reflects recent progress in such areas as high-volume testing, transmitters and receivers, and CAD tools. The unique behavior and requirements associated with RF and microwave systems establishes a need for unique and complex models and simulation tools. The required toolset for a microwave circuit designer includes unique device models, both 2D and 3D electromagnetic simulators, as well as frequency domain based small signal and large signal circuit and system simulators. This unique suite of tools requires a design procedure that is also distinctive. This book examines not only the distinct design tools of the microwave circuit designer, but also the design procedures that must be followed to use them effectively.

Modeling and Scaling Limitations of SiGe HBT Low-frequency Noise and Oscillator Phase Noise

Modeling and Scaling Limitations of SiGe HBT Low-frequency Noise and Oscillator Phase Noise PDF Author:
Publisher:
ISBN:
Category : Radio frequency integrated circuits
Languages : en
Pages : 193

Book Description


Residual Phase Noise Modelling of Silicon Bipolar Amplifiers and Ultra Low Phase Noise Ceramic Dielectric Resonator Oscillators

Residual Phase Noise Modelling of Silicon Bipolar Amplifiers and Ultra Low Phase Noise Ceramic Dielectric Resonator Oscillators PDF Author: Konstantinos Theodoropoulos
Publisher:
ISBN:
Category :
Languages : en
Pages :

Book Description
This thesis describes research into the modelling of residual 1/ f phase noise for Si bipolar amplifiers operating in the linear region and the design construction and measurements of L-Band (1.2 GHz) and C-Band (4.2 GHz and 4.6 GHz) ceramic dielectric resonator based ultra low phase noise oscillators using Si devices. It proposed and demonstrated that for Si bipolar amplifiers the 1/ f phase noise is largely due to the base emitter recombination flicker noise. The up conversion mechanism is described through linear approximation of the phase variation of the amplifier phase response by the variation of the device parameters (Cbc, Cbe, gm, re) caused by the recombination 1/ f noise. The amplifier phase response describes the device over the whole frequency range of operation where the influence of the poles and zeros is investigated. It is found that for a common emitter amplifier it is sufficient to only incorporate the effect of the device poles to describe the phase noise behaviour over most of its operational frequency range. Simulations predict the measurements of others including the flattening of the PM noise at frequencies beyond f3dB, not predicted by previous models. A novel ceramic dielectric resonator based oscillator at 1.2 GHz is described. The oscillator achieves phase noise of -171.8 d. Bc] Hz at 10 kHz offset and ~ 144.5 d. Bc] H z at 1 kHz which is the lowest noise reported in the literature at this frequency band. To achieve these results extensive optimisation of amplifiers has been taken place. For example the amplifiers used in the oscillator produce a very low phase noise better than -182 dBc / Hz at 10 kHz and -175 dBc / Hz at 1 kHz offset from the carrier respectively. Also low residual phase noise narrow band tuning and high power handling phase shifters are reported for the use in oscilIator. Two oscillators at C-Band (4.2 GHz and 4.6 GHz) based on ceramic resonators are described. The 4.2 GHz Oscillator provides a phase noise of -153 dBc/ Hz at 10 kHz and -128 dBc/ Hz at 1 kHz offset from the carrier, which is the lowest reported in literature for that type of oscillators. The 4.6 GHz oscillator phase noise is -149 d. Bc/Hz at 10 kHz and -119.2 d. Bc/Hz at 1 kHz offsets respectively. Both oscillators used the same configuration and the same amplification devices and topology. The improved performance is mainly due to the use of low residual phase noise silicon bipolar amplifiers operated in a push pull configuration, where in literature amplifiers employing SiGe HBTs have been used.

Oscillator Modeling and Phase Noise

Oscillator Modeling and Phase Noise PDF Author: Brian Nguyen Limketkai
Publisher:
ISBN:
Category :
Languages : en
Pages : 206

Book Description