Modular Multilevel Converters PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modular Multilevel Converters PDF full book. Access full book title Modular Multilevel Converters by Sixing Du. Download full books in PDF and EPUB format.

Modular Multilevel Converters

Modular Multilevel Converters PDF Author: Sixing Du
Publisher: John Wiley & Sons
ISBN: 1119367239
Category : Science
Languages : en
Pages : 386

Book Description
An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Modular Multilevel Converters

Modular Multilevel Converters PDF Author: Sixing Du
Publisher: John Wiley & Sons
ISBN: 1119367239
Category : Science
Languages : en
Pages : 386

Book Description
An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems PDF Author: Kamran Sharifabadi
Publisher: John Wiley & Sons
ISBN: 1118851528
Category : Science
Languages : en
Pages : 415

Book Description
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.

Modular Multilevel Converters

Modular Multilevel Converters PDF Author: Sixing Du
Publisher: John Wiley & Sons
ISBN: 1119366305
Category : Science
Languages : en
Pages : 360

Book Description
An invaluable academic reference for the area of high-power converters, covering all the latest developments in the field High-power multilevel converters are well known in industry and academia as one of the preferred choices for efficient power conversion. Over the past decade, several power converters have been developed and commercialized in the form of standard and customized products that power a wide range of industrial applications. Currently, the modular multilevel converter is a fast-growing technology and has received wide acceptance from both industry and academia. Providing adequate technical background for graduate- and undergraduate-level teaching, this book includes a comprehensive analysis of the conventional and advanced modular multilevel converters employed in motor drives, HVDC systems, and power quality improvement. Modular Multilevel Converters: Analysis, Control, and Applications provides an overview of high-power converters, reference frame theory, classical control methods, pulse width modulation schemes, advanced model predictive control methods, modeling of ac drives, advanced drive control schemes, modeling and control of HVDC systems, active and reactive power control, power quality problems, reactive power, harmonics and unbalance compensation, modeling and control of static synchronous compensators (STATCOM) and unified power quality compensators. Furthermore, this book: Explores technical challenges, modeling, and control of various modular multilevel converters in a wide range of applications such as transformer and transformerless motor drives, high voltage direct current transmission systems, and power quality improvement Reflects the latest developments in high-power converters in medium-voltage motor drive systems Offers design guidance with tables, charts graphs, and MATLAB simulations Modular Multilevel Converters: Analysis, Control, and Applications is a valuable reference book for academic researchers, practicing engineers, and other professionals in the field of high power converters. It also serves well as a textbook for graduate-level students.

Modeling and Control of Modular Multilevel Converters

Modeling and Control of Modular Multilevel Converters PDF Author: Su Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The investigation of improved semiconductor devices, power converter topologies and modulation schemes is essential for the development of advanced power electronics technology. As a preferred option of power conversion for high-power applications, multilevel converters, especially Modular Multilevel Converters (MMCs), are gaining increasing popularity in both industry and academia. However, there are several technical challenges associated with the MMC topology. One of the main challenges is the minimization of voltage variations in module capacitors. In addition, the circulating currents, which originate from both the capacitor voltage variations and switching scheme, increase the rating of power devices and power losses. Typically, cascaded control schemes, based on Proportional-Integral (PI) controllers and Pulse Width Modulators (PWMs), have predominately been used to control MMCs. However, tuning of multiple PI loops is difficult and also influences the performance of MMC at both steady-state and transient operating conditions. To overcome these drawbacks, this thesis proposes a Model Predictive Direct Slope Control (MPDSC) scheme for MMCs. This scheme is capable of handling multiple control objectives without using a modulator, thus significantly simplifies the complexity of the control scheme. In addition, a long prediction horizon can be generated without increasing the computational burden of the control algorithm, and therefore the performance of the MMC could be further improved with a shorter sampling time. The viability of MPDSC is demonstrated using simulated and experimental results of a 380-VA prototype MMC, as well as benchmarking against the performance of a prototype controlled by Model Predictive Direct Current Control (MPDCC) scheme. The MPDSC offers performance that is comparable to MPDCC, but with significantly reduced complexity and computational burden. However, this scheme considers all possible switching states to evaluate each control variable, this invariably making the computational burden still heavy. In addition to this, the tuning of multiple weighting factors is cumbersome and inefficient. To overcome these drawbacks, this thesis proposes a Hierarchical Model Predictive Control (HMPC) scheme for MMCs. With this scheme, the load currents are regulated within symmetrical bounds using a modified MPDSC, and the capacitor voltages, circulating currents and switching frequency are minimized through a Model Predictive Multilayer Control (MPMC) scheme. To reduce computational burden of the control algorithm, HMPC evaluates each control variable independently while minimizing the number of switching states for evaluation. Instead of using conventional weighting factors, HMPC utilizes the number of switching states of lower costs as a tuning factor for each control variable, which makes the tuning process efficient and adaptable to any operating conditions. A comparison with a conventional Finite Control Set Model Predictive Control (FCS-MPC) scheme, using simulated as well as experimental results of a prototype MMC, reveals that HMPC offers superior performance. With MPDSC and HMPC schemes, the capacitor voltage variations of MMCs can only be reduced to a certain level. Therefore, this thesis presents a modified MMC topology that utilizes an Inductive Power Transfer (IPT) system to maintain the capacitor voltages within tight bounds. This topology simplifies the control of capacitor voltages, irrespective of the switching scheme and operating conditions of the converter. A mathematical model of the modified topology is developed, and a control scheme is also proposed. The feasibility of the control scheme and the accuracy of the mathematical model are validated using simulated as well as theoretical results of a 2-kVA MMC-IPT system.

Design, Modeling and Control of Modular Multilevel Converter Based HVDC Systems

Design, Modeling and Control of Modular Multilevel Converter Based HVDC Systems PDF Author: Ghazal Falahi
Publisher:
ISBN:
Category :
Languages : en
Pages : 189

Book Description


A Contribution to Modeling and Control of Modular Multilevel Cascaded Converter (MMCC)

A Contribution to Modeling and Control of Modular Multilevel Cascaded Converter (MMCC) PDF Author: Yun Wan
Publisher: Logos Verlag Berlin
ISBN: 9783832546908
Category :
Languages : en
Pages : 0

Book Description
Nowadays the Modular Multilevel Cascaded Converter (MMCC) is a family of emerging high-voltage multilevel converters that are configured with a cascaded connection of identical submodules with low-voltage ratings by distinct topological structures. The MMCC system is featured with a high quantity of coupled system variables (converter currents and floating submodule voltages) and abundant discrete control inputs (submodule switching states). To guarantee a stable and optimal system operation, it is a fundamental challenge to fully model and control these variables. This thesis addresses two frameworks for the control-oriented MMCC modeling as well as the hierarchical analysis. The first framework in Part I presents a comprehensive classification of MMCC topologies, analyzes them by replacing converter branches with continuous controllable voltage sources and develops a unified modeling procedure for current and branch energy, aiming for a general understand of MMCC in the context of continuous system theory. The second framework aims to develop an explicit relation between submodule switching states and MMCC system variables, which preserves the characteristics of discrete switched system. Two practical direct control methods, e.g., fast reduced control set and event-based method, are proposed, which achieves comparable harmonic performance and obviously improved submodule voltage balancing under the premise of the same switching frequency as the conventional submodule-voltage-sorting method.

Modular Multilevel Converters

Modular Multilevel Converters PDF Author: Fujin Deng
Publisher: John Wiley & Sons
ISBN: 1119875625
Category : Technology & Engineering
Languages : en
Pages : 372

Book Description
Modular Multilevel Converters Expert discussions of cutting-edge methods used in MMC control, protection, and fault detection In Modular Multilevel Converters: Control, Fault Detection, and Protection, a team of distinguished researchers delivers a comprehensive discussion of fault detection, protection, and tolerant control of modular multilevel converters (MMCs) under internal and external faults. Beginning with a description of the configuration of MMCs, their operation principles, modulation schemes, mathematical models, and component design, the authors go on to explore output control, fault detection, capacitor monitoring, and other topics of central importance in the field. The book offers summaries of centralized capacitor voltage-balancing control methods and presents several capacitor monitoring methods, like the direct and sorting-based techniques. It also describes full-bridge and half-bridge submodule-based hybrid MMC protection methods and alternative fault blocking SM-based MMCs. Readers will also find: A thorough introduction to modular multilevel converters, including circuits, operation principles, modulation, mathematical models, components, and design constraints In-depth discussions of the control of modular multilevel converters, including output control, centralized capacitor voltage control, and individual capacitor voltage control Comprehensive explorations of fault detection of MMCs under IGBT faults, including short-circuit and open-circuit faults, as well as fault-tolerant control of MMCs Fulsome treatments of the control of MMCs under AC grid faults, including discussions of AC-side current control Perfect for electrical engineering researchers, Modular Multilevel Converters: Control, Fault Detection, and Protection, will also earn a place in the libraries of electrical engineers working in industry, as well as undergraduate and graduate students with an interest in MMCs.

Multilevel Converters: Analysis, Modulation, Topologies, and Applications

Multilevel Converters: Analysis, Modulation, Topologies, and Applications PDF Author: Gabriele Grandi
Publisher: MDPI
ISBN: 3039214810
Category : Technology & Engineering
Languages : en
Pages : 548

Book Description
This book is a collection of scientific papers concerning multilevel inverters examined from different points of view. Many applications are considered, such as renewable energy interface, power conditioning systems, electric drives, and chargers for electric vehicles. Different topologies have been examined in both new configurations and well-established structures, introducing novel and particular modulation strategies, and examining the effect of modulation techniques on voltage and current harmonics and the total harmonic distortion.

High Voltage Direct Current Transmission

High Voltage Direct Current Transmission PDF Author: Dragan Jovcic
Publisher: John Wiley & Sons
ISBN: 1119566614
Category : Technology & Engineering
Languages : en
Pages : 657

Book Description
Presents the latest developments in switchgear and DC/DC converters for DC grids, and includes substantially expanded material on MMC HVDC This newly updated edition covers all HVDC transmission technologies including Line Commutated Converter (LCC) HVDC; Voltage Source Converter (VSC) HVDC, and the latest VSC HVDC based on Modular Multilevel Converters (MMC), as well as the principles of building DC transmission grids. Featuring new material throughout, High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition offers several new chapters/sections including one on the newest MMC converters. It also provides extended coverage of switchgear, DC grid protection and DC/DC converters following the latest developments on the market and in research projects. All three HVDC technologies are studied in a wide range of topics, including: the basic converter operating principles; calculation of losses; system modelling, including dynamic modelling; system control; HVDC protection, including AC and DC fault studies; and integration with AC systems and fundamental frequency analysis. The text includes: A chapter dedicated to hybrid and mechanical DC circuit breakers Half bridge and full bridge MMC: modelling, control, start-up and fault management A chapter dedicated to unbalanced operation and control of MMC HVDC The advancement of protection methods for DC grids Wideband and high-order modeling of DC cables Novel treatment of topics not found in similar books, including SimPowerSystems models and examples for all HVDC topologies hosted by the 1st edition companion site. High Voltage Direct Current Transmission: Converters, Systems and DC Grids, 2nd Edition serves as an ideal textbook for a graduate-level course or a professional development course.

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems

Design, Control, and Application of Modular Multilevel Converters for HVDC Transmission Systems PDF Author: Kamran Sharifabadi
Publisher: John Wiley & Sons
ISBN: 1118851544
Category : Science
Languages : en
Pages : 522

Book Description
Design, Control and Application of Modular Multilevel Converters for HVDC Transmission Systems is a comprehensive guide to semiconductor technologies applicable for MMC design, component sizing control, modulation, and application of the MMC technology for HVDC transmission. Separated into three distinct parts, the first offers an overview of MMC technology, including information on converter component sizing, Control and Communication, Protection and Fault Management, and Generic Modelling and Simulation. The second covers the applications of MMC in offshore WPP, including planning, technical and economic requirements and optimization options, fault management, dynamic and transient stability. Finally, the third chapter explores the applications of MMC in HVDC transmission and Multi Terminal configurations, including Supergrids. Key features: Unique coverage of the offshore application and optimization of MMC-HVDC schemes for the export of offshore wind energy to the mainland. Comprehensive explanation of MMC application in HVDC and MTDC transmission technology. Detailed description of MMC components, control and modulation, different modeling approaches, converter dynamics under steady-state and fault contingencies including application and housing of MMC in HVDC schemes for onshore and offshore. Analysis of DC fault detection and protection technologies, system studies required for the integration of HVDC terminals to offshore wind power plants, and commissioning procedures for onshore and offshore HVDC terminals. A set of self-explanatory simulation models for HVDC test cases is available to download from the companion website. This book provides essential reading for graduate students and researchers, as well as field engineers and professionals who require an in-depth understanding of MMC technology.