Modeling and Control of Grids of Near Future with Converters and Synchronous Machines PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and Control of Grids of Near Future with Converters and Synchronous Machines PDF full book. Access full book title Modeling and Control of Grids of Near Future with Converters and Synchronous Machines by Sayan Samanta. Download full books in PDF and EPUB format.

Modeling and Control of Grids of Near Future with Converters and Synchronous Machines

Modeling and Control of Grids of Near Future with Converters and Synchronous Machines PDF Author: Sayan Samanta
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The future power grid is gradually transitioning towards a greater utilization of inverter-based resources (IBRs) to integrate renewable energy in generation portfolio. The existing synchronous generator (SG)-dominated power system is evolving into a grid, where both SGs and IBRs coexist. Since SGs are sources of mechanical inertia, their gradual replacement is resulting in a low-inertia power grid. One of the main challenges faced by such systems incorporating SGs and IBRs is the primary frequency response following a loss of generation or sudden large change in loads, which may lead to underfrequency load shedding (UFLS). Broadly, bulk power systems connected to SGs and a significant number of IBRs are the subject matter of this dissertation, with a focus on modeling, stability analysis, and control for providing frequency support from the perspective of primary frequency response. Although IBRs can be of different types depending on the control strategy, grid-forming converter (GFC) technology with a direct control over its frequency is much less understood, and is a major focus of research in this dissertation. These GFC-interfaced renewable resources in future low-inertia grids are expected to provide primary frequency support so that underfrequency load shedding is averted. The GFCs can be divided into two classes based on the control strategy: (a) class-A: droop control, dispatchable virtual oscillator control, and virtual synchronous machine, and (b) class-B: matching control. It is observed that while providing frequency support, the class-A GFCs may undergo dc-voltage collapse under current limitations during underfrequency events. On the contrary, class-B GFCs are more robust in this context. In the first part of the dissertation, we perform a stability analysis of both classes of GFCs following such events. To that end, first, the averaged phasor models of these GFC classes are developed, which can be seamlessly integrated with traditional positive sequence fundamental frequency planning models of grids. Building on this, simplified averaged models are derived to study the stability of the dc-link voltage of the GFCs under current limitations in a generic multimachine system. Using these models, the sufficiency conditions for stability for both the classes and that of instability for class-A GFCs are established. As a logical next step, a decentralized supplementary control for the droop-based class-A GFC is proposed to solve the dc-link voltage instability issue under the current limitations. This sliding mode control-based approach also aims to provide primary frequency support after the contingency. The proposed method leads to quantifiable frequency support irrespective of frequency deviation, which in turn can incentivize the plants through market participation. This approach requires the communication of frequency measurements of GFCs from adjacent buses. The proposed controller guarantees asymptotic stability of power grids with generic configurations that include multiple SGs and GFCs under dc power flow approximation and a mild assumption on the center-of-inertia based frequency dynamics model. The sliding mode controller design is challenging for a grid with multiple GFCs, as the sliding surface for each GFC requires iterative experiments for refinement. Moreover, for sliding mode control we could not establish the stability guarantee in the reduced-order system in presence of the constraints on the control input. To solve this problem, a nonlinear model predictive control (NMPC) strategy is proposed for frequency support from the GFCs, which ensures dc-link voltage stability. The NMPC approach considers a multitude of constraints including those on control input and tracks the dc-link voltage reference to indirectly regulates active power output. The controller also ensures finite-time practical stability of the close-loop system. The above-mentioned analyses and control strategies are primarily evaluated in positive sequence fundamental frequency phasor models of multiple modified IEEE benchmark systems with IBRs. Finally, the detailed electromagnetic transient (EMT) models of the IBRs are used to closely replicate the behavior of the GFCs in a real-world power grid. An EMT-TS co-simulation platform is developed for integrating the EMT models of IBRs to the phasor-based planning models of bulk power systems. This platform is used to integrate the planning model of the Western Electricity Coordinating Council (WECC) grid with an EMT-based GFC model. The proposed sliding mode control is validated in this co-simulation model to ensure the dc-link voltage stability of the GFC and provide frequency support following a contingency.

Modeling and Control of Grids of Near Future with Converters and Synchronous Machines

Modeling and Control of Grids of Near Future with Converters and Synchronous Machines PDF Author: Sayan Samanta
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
The future power grid is gradually transitioning towards a greater utilization of inverter-based resources (IBRs) to integrate renewable energy in generation portfolio. The existing synchronous generator (SG)-dominated power system is evolving into a grid, where both SGs and IBRs coexist. Since SGs are sources of mechanical inertia, their gradual replacement is resulting in a low-inertia power grid. One of the main challenges faced by such systems incorporating SGs and IBRs is the primary frequency response following a loss of generation or sudden large change in loads, which may lead to underfrequency load shedding (UFLS). Broadly, bulk power systems connected to SGs and a significant number of IBRs are the subject matter of this dissertation, with a focus on modeling, stability analysis, and control for providing frequency support from the perspective of primary frequency response. Although IBRs can be of different types depending on the control strategy, grid-forming converter (GFC) technology with a direct control over its frequency is much less understood, and is a major focus of research in this dissertation. These GFC-interfaced renewable resources in future low-inertia grids are expected to provide primary frequency support so that underfrequency load shedding is averted. The GFCs can be divided into two classes based on the control strategy: (a) class-A: droop control, dispatchable virtual oscillator control, and virtual synchronous machine, and (b) class-B: matching control. It is observed that while providing frequency support, the class-A GFCs may undergo dc-voltage collapse under current limitations during underfrequency events. On the contrary, class-B GFCs are more robust in this context. In the first part of the dissertation, we perform a stability analysis of both classes of GFCs following such events. To that end, first, the averaged phasor models of these GFC classes are developed, which can be seamlessly integrated with traditional positive sequence fundamental frequency planning models of grids. Building on this, simplified averaged models are derived to study the stability of the dc-link voltage of the GFCs under current limitations in a generic multimachine system. Using these models, the sufficiency conditions for stability for both the classes and that of instability for class-A GFCs are established. As a logical next step, a decentralized supplementary control for the droop-based class-A GFC is proposed to solve the dc-link voltage instability issue under the current limitations. This sliding mode control-based approach also aims to provide primary frequency support after the contingency. The proposed method leads to quantifiable frequency support irrespective of frequency deviation, which in turn can incentivize the plants through market participation. This approach requires the communication of frequency measurements of GFCs from adjacent buses. The proposed controller guarantees asymptotic stability of power grids with generic configurations that include multiple SGs and GFCs under dc power flow approximation and a mild assumption on the center-of-inertia based frequency dynamics model. The sliding mode controller design is challenging for a grid with multiple GFCs, as the sliding surface for each GFC requires iterative experiments for refinement. Moreover, for sliding mode control we could not establish the stability guarantee in the reduced-order system in presence of the constraints on the control input. To solve this problem, a nonlinear model predictive control (NMPC) strategy is proposed for frequency support from the GFCs, which ensures dc-link voltage stability. The NMPC approach considers a multitude of constraints including those on control input and tracks the dc-link voltage reference to indirectly regulates active power output. The controller also ensures finite-time practical stability of the close-loop system. The above-mentioned analyses and control strategies are primarily evaluated in positive sequence fundamental frequency phasor models of multiple modified IEEE benchmark systems with IBRs. Finally, the detailed electromagnetic transient (EMT) models of the IBRs are used to closely replicate the behavior of the GFCs in a real-world power grid. An EMT-TS co-simulation platform is developed for integrating the EMT models of IBRs to the phasor-based planning models of bulk power systems. This platform is used to integrate the planning model of the Western Electricity Coordinating Council (WECC) grid with an EMT-based GFC model. The proposed sliding mode control is validated in this co-simulation model to ensure the dc-link voltage stability of the GFC and provide frequency support following a contingency.

Modeling techniques and control strategies for inverter dominated microgrids

Modeling techniques and control strategies for inverter dominated microgrids PDF Author: Gkountaras, Aris
Publisher: Universitätsverlag der TU Berlin
ISBN: 3798328722
Category : Technology & Engineering
Languages : en
Pages : 172

Book Description
The character of modern power systems is changing rapidly and inverters are taking over a considerable part of the energy generation. A future purely inverter-based grid could be a viable solution, if its technical feasibility can be first validated. The focus of this work lies on inverter dominated microgrids, which are also mentioned as 'hybrid' in several instances throughout the thesis. Hybrid, as far as the energy input of each generator is concerned. Conventional fossil fuel based generators are connected in parallel to renewable energy sources as well as battery systems. The main contributions of this work comprise of: The analysis of detailed models and control structures of grid inverters, synchronous generators and battery packs and the utilization of these models to formulate control strategies for distributed generators. The developed strategies accomplish objectives in a wide time scale, from maintaining stability during faults and synchronization transients as well as optimizing load flow through communication-free distributed control. Die Struktur der modernen Energieversorgung hat sich in den letzten Jahrzehnten massiv geändert. Dezentrale Generatoren, die auf Wechselrichtern basieren, übernehmen einen großen Teil der Energieerzeugung. Ein ausschließlich wechselrichterbasiertes Netz wäre ein realistischer Ansatz, wenn seine technische Machbarkeit verifiziert werden könnte. Die wichtigste Beiträge dieser Arbeit sind: Die Analyse von Modellen und Regelstrukturen von Netzwechselrichtern, Synchrongeneratoren und Batterieanlagen. Die entwickelten Modelle werden verwendet, um Regelstrategien für dezentrale Generatoren in Mittelspannungsinselnetzen zu formulieren. Die erste Strategie ist eine Synchronisationsmethode für netzbildende Wechselrichter. Zweitens wird die Leistungsaufteilung in Mittelspannungsinselnetzen mittels Droop Regelung analysiert. Weiterhin erfolgt die Untersuchung der transienten Lastaufteilung zwischen netzbildenden Einheiten mit unterschiedlichen Zeitkonstanten. Beim Betrieb mehrerer paralleler Wechselrichter wird der Einfluss der Netzimpedanz auf die transiente Lastaufteilung analysiert. Die dritte entworfene Regelstrategie umfasst die Integration der Sekundärregelung in die Primärregelung. Der Ladezustand von Batterien wird mit der Lastaufteilung gekoppelt, um die Autonomie des Netzes zu stärken. Abschließend wird eine Kurzschlussstrategie für netzbildende und netzspeisende Wechselrichter entwickelt. Ziel der Strategie ist die Maximierung des Kurzschlussstromes. Als zusätzliche Randbedingung soll keine Kommunikation zwischen Generatoren stattfinden.

Grid Connected Converters

Grid Connected Converters PDF Author: Hassan Bevrani
Publisher: Elsevier
ISBN: 0323999549
Category : Technology & Engineering
Languages : en
Pages : 312

Book Description
Grid Connected Converters: Modeling, Stability and Control discusses the foundations and core applications of this diverse field, from structure, modeling and dynamic equivalencing through power and microgrids dynamics and stability, before moving on to controller synthesis methodologies for a powerful range of applications. The work opens with physical constraints and engineering aspects of advanced control schemes. Robust and adaptive control strategies are evaluated using real-time simulation and experimental studies. Once foundations have been established, the work goes on to address new technical challenges such as virtual synchronous generators and synergic inertia emulation in response to low inertia challenges in modern power grids.The book also addresses advanced systematic control synthesis methodologies to enhance system stability and dynamic performance in the presence of uncertainties, practical constraints and cyberattacks. - Addresses new approaches for modeling, stability analysis and control design of GCCs - Proposes robust and flexible GCC control frameworks for supporting grid regulation - Emphasizes the application of GCCs in inertia emulation, oscillation damping control, and dynamic shaping - Addresses systematic control synthesis methodologies for system security and dynamic performance

Converter-Based Dynamics and Control of Modern Power Systems

Converter-Based Dynamics and Control of Modern Power Systems PDF Author: Antonello Monti
Publisher: Academic Press
ISBN: 0128184922
Category : Technology & Engineering
Languages : en
Pages : 376

Book Description
Converter-Based Dynamics and Control of Modern Power Systems addresses the ongoing changes and challenges in rotating masses of synchronous generators, which are transforming dynamics of the electrical system. These changes make it more important to consider and understand the role of power electronic systems and their characteristics in shaping the subtleties of the grid and this book fills that knowledge gap. Balancing theory, discussion, diagrams, mathematics, and data, this reference provides the information needed to acquire a thorough overview of resilience issues and frequency definition and estimation in modern power systems. This book offers an overview of classical power system dynamics and identifies ways of establishing future challenges and how they can be considered at a global level to overcome potential problems. The book is designed to prepare future engineers for operating a system that will be driven by electronics and less by electromechanical systems. - Includes theory on the emerging topic of electrical grids based on power electronics - Creates a good bridge between traditional theory and modern theory to support researchers and engineers - Links the two fields of power systems and power electronics in electrical engineering

Modular Interactive Modeling for Control and Simulation of Electric Power Systems

Modular Interactive Modeling for Control and Simulation of Electric Power Systems PDF Author: Sarah Flanagan
Publisher:
ISBN:
Category :
Languages : en
Pages : 69

Book Description
Power systems must ensure reliable service during normal operation and unexpected disturbances. They also should enable decarbonization goals by supporting utilization of new renewable energy resources that are being added to the system. Conventional control used in power plants and generators is becoming insufficient because previously true assumptions no longer hold with the widespread implementation of renewable energy sources. Future electric power systems will comprise of a more distributed grid of loads and Distributed Energy Resources (DERs), all contributing to electricity service goals. Novel modeling and control for their provable performance are actively being pursued. This thesis builds on the idea of novel modeling and controlling future electric power systems using a multi-level modular approach. Particular emphasis is on general simulation tools for assessing dependence of these new architectures on control design. A MATLAB-based Centralized Automated Modeling of Power Systems (CAMPS) software models the primary dynamics of components in a modular way and develops a centralized model of the interconnected system. In this thesis further extensions to CAMPS improve plotting of state variables and their expressions, enable conversion from the dq (direct quadrature) reference frame to the abc-reference frame, and allow substitution of different controllers into an open loop model. A recently introduced modeling approach, which maps voltage and current variables into the energy space and interactively exchanges energy space variables called interaction variables between components, is used as the starting model for new simulations. One energy space-based controller is simulated using Simulink to test the controller's performance when using a switching model instead of an average model. A new software tool, Plug-And-Play Automated Modeling of Power Systems (PAMPS) based on this recent theoretical work implements distributed algorithms in MATLAB. One example applies PAMPS to a RL (resistive and inductive) circuit controlled by a voltage source and connected to a constant power load. Future work can use PAMPS to model additional electrical components including synchronous machines and solar inverters. Since PAMPS exchanges information within the energy space, it can also be applied in future work to model the interactions between multi-energy sources such as mechanical and thermal energy conversion components.

Grid-Forming Converters

Grid-Forming Converters PDF Author: Jingyang Fang
Publisher: Elsevier
ISBN: 0443237344
Category : Technology & Engineering
Languages : en
Pages : 0

Book Description
Grid-Forming Converters: Principles, Control, and Applications in Modern Power Systems is a pioneering guidebook to this state-of-the-art technology and its potential in enabling more-electronics grids and deep renewable integration for the energy systems of the future. Beginning with a clear explanation of the challenges presented for the standard synchronous generator or grid-tied converters by fossil-fuel phase-out and renewable integration, this book goes on to explain the fundamental concepts of grid-forming converters. Having established a solid foundational understanding the reader will learn practical techniques for implementation including design, control, analysis, and optimization. Finally, readers tackle case studies and example applications from energy storage to electric vehicles. From several of the foremost experts and educators in energy systems and power electronics, Grid-Forming Converters is an essential tool for students, professors and engineers working to make renewable-based grids a reality. - Builds a clear, foundational understanding of the technology of grid-forming converters and its importance in resolving the challenges of renewable-based grids - Offers a holistic guide to the operation and implementation of the technology, from design to modeling and optimization - Provides case studies and simulation codes to enable new and emerging applications - Equips the reader to use this pioneering technology for more electronics and the renewable grids of the future

Model Predictive Control of Wind Energy Conversion Systems

Model Predictive Control of Wind Energy Conversion Systems PDF Author: Venkata Yaramasu
Publisher: John Wiley & Sons
ISBN: 1118988582
Category : Science
Languages : en
Pages : 516

Book Description
Model Predictive Control of Wind Energy Conversion Systems addresses the predicative control strategy that has emerged as a promising digital control tool within the field of power electronics, variable-speed motor drives, and energy conversion systems. The authors provide a comprehensive analysis on the model predictive control of power converters employed in a wide variety of variable-speed wind energy conversion systems (WECS). The contents of this book includes an overview of wind energy system configurations, power converters for variable-speed WECS, digital control techniques, MPC, modeling of power converters and wind generators for MPC design. Other topics include the mapping of continuous-time models to discrete-time models by various exact, approximate, and quasi-exact discretization methods, modeling and control of wind turbine grid-side two-level and multilevel voltage source converters. The authors also focus on the MPC of several power converter configurations for full variable-speed permanent magnet synchronous generator based WECS, squirrel-cage induction generator based WECS, and semi-variable-speed doubly fed induction generator based WECS. Furthermore, this book: Analyzes a wide variety of practical WECS, illustrating important concepts with case studies, simulations, and experimental results Provides a step-by-step design procedure for the development of predictive control schemes for various WECS configurations Describes continuous- and discrete-time modeling of wind generators and power converters, weighting factor selection, discretization methods, and extrapolation techniques Presents useful material for other power electronic applications such as variable-speed motor drives, power quality conditioners, electric vehicles, photovoltaic energy systems, distributed generation, and high-voltage direct current transmission. Explores S-Function Builder programming in MATLAB environment to implement various MPC strategies through the companion website Reflecting the latest technologies in the field, Model Predictive Control of Wind Energy Conversion Systems is a valuable reference for academic researchers, practicing engineers, and other professionals. It can also be used as a textbook for graduate-level and advanced undergraduate courses.

The Impact of Automatic Control Research on Industrial Innovation

The Impact of Automatic Control Research on Industrial Innovation PDF Author: Silvia Mastellone
Publisher: John Wiley & Sons
ISBN: 1119983630
Category : Science
Languages : en
Pages : 260

Book Description
The Impact of Automatic Control Research on Industrial Innovation Bring together the theory and practice of control research with this innovative overview Automatic control research focuses on subjects pertaining to the theory and practice of automation science and technology subjects such as industrial automation, robotics, and human???machine interaction. With each passing year, these subjects become more relevant to researchers, policymakers, industrialists, and workers alike. The work of academic control researchers, however, is often distant from the perspectives of industry practitioners, creating the potential for insights to be lost on both sides. The Impact of Automatic Control Research on Industrial Innovation seeks to close this distance, providing an industrial perspective on the future of control research. It seeks to outline the possible and ongoing impacts of automatic control technologies across a range of industries, enabling readers to understand the connection between theory and practice. The result is a book that combines scholarly and practical understandings of industrial innovations and their possible role in building a sustainable world. The Impact of Automatic Control Research on Industrial Innovation readers will also find: Insights on industrial and commercial applications of automatic control theory. Detailed discussion of industrial sectors including power, automotive, production processes, and more. An applied research roadmap for each sector. This book is a must-own for both control researchers and control engineers, in both theoretical and applied contexts, as well as for graduate or continuing education courses on control theory and practice.

Grid Converters for Photovoltaic and Wind Power Systems

Grid Converters for Photovoltaic and Wind Power Systems PDF Author: Remus Teodorescu
Publisher: John Wiley & Sons
ISBN: 1119957206
Category : Technology & Engineering
Languages : en
Pages : 358

Book Description
Grid converters are the key player in renewable energy integration. The high penetration of renewable energy systems is calling for new more stringent grid requirements. As a consequence, the grid converters should be able to exhibit advanced functions like: dynamic control of active and reactive power, operation within a wide range of voltage and frequency, voltage ride-through capability, reactive current injection during faults, grid services support. This book explains the topologies, modulation and control of grid converters for both photovoltaic and wind power applications. In addition to power electronics, this book focuses on the specific applications in photovoltaic wind power systems where grid condition is an essential factor. With a review of the most recent grid requirements for photovoltaic and wind power systems, the book discusses these other relevant issues: modern grid inverter topologies for photovoltaic and wind turbines islanding detection methods for photovoltaic systems synchronization techniques based on second order generalized integrators (SOGI) advanced synchronization techniques with robust operation under grid unbalance condition grid filter design and active damping techniques power control under grid fault conditions, considering both positive and negative sequences Grid Converters for Photovoltaic and Wind Power Systems is intended as a coursebook for graduated students with a background in electrical engineering and also for professionals in the evolving renewable energy industry. For people from academia interested in adopting the course, a set of slides is available for download from the website. www.wiley.com/go/grid_converters

Model Predictive Control of Microgrids

Model Predictive Control of Microgrids PDF Author: Carlos Bordons
Publisher: Springer Nature
ISBN: 3030245705
Category : Technology & Engineering
Languages : en
Pages : 266

Book Description
The book shows how the operation of renewable-energy microgrids can be facilitated by the use of model predictive control (MPC). It gives readers a wide overview of control methods for microgrid operation at all levels, ranging from quality of service, to integration in the electricity market. MPC-based solutions are provided for the main control issues related to energy management and optimal operation of microgrids. The authors present MPC techniques for case studies that include different renewable sources – mainly photovoltaic and wind – as well as hybrid storage using batteries, hydrogen and supercapacitors. Experimental results for a pilot-scale microgrid are also presented, as well as simulations of scheduling in the electricity market and integration of electric and hybrid vehicles into the microgrid. in order to replicate the examples provided in the book and to develop and validate control algorithms on existing or projected microgrids. Model Predictive Control of Microgrids will interest researchers and practitioners, enabling them to keep abreast of a rapidly developing field. The text will also help to guide graduate students through processes from the conception and initial design of a microgrid through its implementation to the optimization of microgrid management. Advances in Industrial Control reports and encourages the transfer of technology in control engineering. The rapid development of control technology has an impact on all areas of the control discipline. The series offers an opportunity for researchers to present an extended exposition of new work in all aspects of industrial control.