Modeling and Analysis of High Frequency Noise in BiCMOS Transistors PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling and Analysis of High Frequency Noise in BiCMOS Transistors PDF full book. Access full book title Modeling and Analysis of High Frequency Noise in BiCMOS Transistors by Peng Cheng. Download full books in PDF and EPUB format.

Modeling and Analysis of High Frequency Noise in BiCMOS Transistors

Modeling and Analysis of High Frequency Noise in BiCMOS Transistors PDF Author: Peng Cheng
Publisher:
ISBN:
Category : Bipolar transistors
Languages : en
Pages :

Book Description
The importance of high frequency noise performance is increasing in advanced bipolar and complementary metal-oxide semiconductor (BiCMOS) technologies because of the high demands of radio frequency (RF) and mixed-signal integrated circuits used in the 5G communication, automatic-driving sensors and internet of things (IOT) applications. While the characterization and modeling of high frequency noise of BiCMOS transistors have been a topic for many years, some important issues have not been clarified. For example, the noise correlation is not well predicted for bipolar devices, the excess noise factor is not well understood for MOSFET devices and the temperature dependence of high frequency noise in BiCMOS devices is not well studied. Focused on these issues, this research establishes the approach to extract the noise transit time from the high current compact model (HICUM), demonstrates an efficient methodology for high frequency noise prediction for silicon-germanium heterojunction bipolar transistors (SiGe HBTs) and validates the prediction methodology over size, bias and temperature. One of the issues of high frequency noise modeling of bipolar transistors is the noise correlation effect. This research explores the physical origin of high frequency noise correlation, studies the noise model of SiGe HBTs and creates an approach to extract the noise transit time from the HICUM compact model. The extracted noise transit time is validated by the tuner-based noise measurement results of sample SiGe HBTs by comparing the four noise parameters between the calculated and measured data over transistor size, bias and temperature. The results show that the noise transit time can be independent of frequency but dependent on bias and temperature. Furthermore, a complete high frequency noise prediction system is established. Based on the extraction methodology of the noise transit time from the HICUM model, this dissertation demonstrates a low-cost and time-friendly methodology to predict the full high frequency noise properties of the bipolar devices directly from the S-parameter measurement, DC measurement and the parameters from the HICUM model without the tuner-based noise measurement. Compared with the conventional tuner-based noise measurement, this methodology can save the measurement time as well as achieve a good accuracy. For MOSFET devices, the importance of excess noise factor is increasing with the transistor size scaling down to sub-100nm for high frequency noise modeling, but it has not been well studied so far. This research analyzes the excess noise factor based on the device physics and characterization results, investigates the noise sources contribution and models the high frequency noise based on Y-parameter methodology.

Modeling and Analysis of High Frequency Noise in BiCMOS Transistors

Modeling and Analysis of High Frequency Noise in BiCMOS Transistors PDF Author: Peng Cheng
Publisher:
ISBN:
Category : Bipolar transistors
Languages : en
Pages :

Book Description
The importance of high frequency noise performance is increasing in advanced bipolar and complementary metal-oxide semiconductor (BiCMOS) technologies because of the high demands of radio frequency (RF) and mixed-signal integrated circuits used in the 5G communication, automatic-driving sensors and internet of things (IOT) applications. While the characterization and modeling of high frequency noise of BiCMOS transistors have been a topic for many years, some important issues have not been clarified. For example, the noise correlation is not well predicted for bipolar devices, the excess noise factor is not well understood for MOSFET devices and the temperature dependence of high frequency noise in BiCMOS devices is not well studied. Focused on these issues, this research establishes the approach to extract the noise transit time from the high current compact model (HICUM), demonstrates an efficient methodology for high frequency noise prediction for silicon-germanium heterojunction bipolar transistors (SiGe HBTs) and validates the prediction methodology over size, bias and temperature. One of the issues of high frequency noise modeling of bipolar transistors is the noise correlation effect. This research explores the physical origin of high frequency noise correlation, studies the noise model of SiGe HBTs and creates an approach to extract the noise transit time from the HICUM compact model. The extracted noise transit time is validated by the tuner-based noise measurement results of sample SiGe HBTs by comparing the four noise parameters between the calculated and measured data over transistor size, bias and temperature. The results show that the noise transit time can be independent of frequency but dependent on bias and temperature. Furthermore, a complete high frequency noise prediction system is established. Based on the extraction methodology of the noise transit time from the HICUM model, this dissertation demonstrates a low-cost and time-friendly methodology to predict the full high frequency noise properties of the bipolar devices directly from the S-parameter measurement, DC measurement and the parameters from the HICUM model without the tuner-based noise measurement. Compared with the conventional tuner-based noise measurement, this methodology can save the measurement time as well as achieve a good accuracy. For MOSFET devices, the importance of excess noise factor is increasing with the transistor size scaling down to sub-100nm for high frequency noise modeling, but it has not been well studied so far. This research analyzes the excess noise factor based on the device physics and characterization results, investigates the noise sources contribution and models the high frequency noise based on Y-parameter methodology.

High-Frequency Bipolar Transistors

High-Frequency Bipolar Transistors PDF Author: Michael Reisch
Publisher: Springer Science & Business Media
ISBN: 364255900X
Category : Technology & Engineering
Languages : en
Pages : 671

Book Description
This modern book-length treatment gives a detailed presentation of high-frequency bipolar transistors in silicon or silicon-germanium technology, with particular emphasis placed on today's advanced compact models and their physical foundations.

High-frequency Noise Modeling of Si(Ge) Bipolar Transistors

High-frequency Noise Modeling of Si(Ge) Bipolar Transistors PDF Author: Francesco Vitale
Publisher:
ISBN: 9789461086150
Category :
Languages : en
Pages :

Book Description


Integrated Video-Frequency Continuous-Time Filters

Integrated Video-Frequency Continuous-Time Filters PDF Author: Scott D. Willingham
Publisher: Springer
ISBN:
Category : Technology & Engineering
Languages : en
Pages : 636

Book Description
Advances in the state of the art mean the signal processing ICs of ever-increasing complexity are being introduced. While the typical portion of a large IC devoted to analog circuits has diminished, the performance of those surviving analog signal processing circuits remains vital and their design challenging. Moreover, the emerging high-definition TV technology has created a new area for IC development, one with formidable signal processing requirements. The antialiasing filters needed for one proposed HDTV decoder motivated the research documented in this book. Sharply selective filters place tight constraints on the permitted excess phase shifts of their constituent circuits. Combined with stringent requirements for low distortion at video frequencies, these constraints challenge the IC filter designer. Integrated Video-Frequency Continuous-Time Filters: High-Performance Realizations in BiCMOS deals with what is arguably the mainstay of analog signal processing circuits. Prominent applications in computer disk-drive read channels, video receivers, rf circuits, and antialiasing and reconstruction in data converters testifies to their importance. Moreover, they are excellent benchmarks for more general analog signal processors. Bipolar and MOSFET transistors, freely combined at the lowest circuit levels, provide the designer with an opportunity to develop potent variations on the standard idioms. The book considers the general principles of BiCMOS circuit design, through to a demanding design problem. This case-study approach allows a concrete discussion of the justification for and practical trade-offs of each design decision. Audience: A reference work for experienced IC designers and a text for advanced IC design students.

Analysis and Design of Transimpedance Amplifiers for Optical Receivers

Analysis and Design of Transimpedance Amplifiers for Optical Receivers PDF Author: Eduard Säckinger
Publisher: John Wiley & Sons
ISBN: 1119263751
Category : Technology & Engineering
Languages : en
Pages : 584

Book Description
An up-to-date, comprehensive guide for advanced electrical engineering studentsand electrical engineers working in the IC and optical industries This book covers the major transimpedance amplifier (TIA) topologies and their circuit implementations for optical receivers. This includes the shunt-feedback TIA, common-base TIA, common-gate TIA, regulated-cascode TIA, distributed-amplifier TIA, nonresistive feedback TIA, current-mode TIA, burst-mode TIA, and analog-receiver TIA. The noise, transimpedance, and other performance parameters of these circuits are analyzed and optimized. Topics of interest include post amplifiers, differential vs. single-ended TIAs, DC input current control, and adaptive transimpedance. The book features real-world examples of TIA circuits for a variety of receivers (direct detection, coherent, burst-mode, etc.) implemented in a broad array of technologies (HBT, BiCMOS, CMOS, etc.). The book begins with an introduction to optical communication systems, signals, and standards. It then moves on to discussions of optical fiber and photodetectors. This discussion includes p-i-n photodetectors; avalanche photodetectors (APD); optically preamplified detectors; integrated detectors, including detectors for silicon photonics; and detectors for phase-modulated signals, including coherent detectors. This is followed by coverage of the optical receiver at the system level: the relationship between noise, sensitivity, optical signal-to-noise ratio (OSNR), and bit-error rate (BER) is explained; receiver impairments, such as intersymbol interference (ISI), are covered. In addition, the author presents TIA specifications and illustrates them with example values from recent product data sheets. The book also includes: Many numerical examples throughout that help make the material more concrete for readers Real-world product examples that show the performance of actual IC designs Chapter summaries that highlight the key points Problems and their solutions for readers who want to practice and deepen their understanding of the material Appendices that cover communication signals, eye diagrams, timing jitter, nonlinearity, adaptive equalizers, decision point control, forward error correction (FEC), and second-order low-pass transfer functions Analysis and Design of Transimpedance Amplifiers for Optical Receivers belongs on the reference shelves of every electrical engineer working in the IC and optical industries. It also can serve as a textbook for upper-level undergraduates and graduate students studying integrated circuit design and optical communication.

Low-Frequency Noise in Advanced MOS Devices

Low-Frequency Noise in Advanced MOS Devices PDF Author: Martin Haartman
Publisher: Springer Science & Business Media
ISBN: 1402059108
Category : Technology & Engineering
Languages : en
Pages : 224

Book Description
This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.

Noise in High-Frequency Circuits and Oscillators

Noise in High-Frequency Circuits and Oscillators PDF Author: Burkhard Schiek
Publisher: John Wiley & Sons
ISBN: 0470038934
Category : Technology & Engineering
Languages : en
Pages : 424

Book Description
A classroom-tested book addressing key issues of electrical noise This book examines noise phenomena in linear and nonlinear high-frequency circuits from both qualitative and quantitative perspectives. The authors explore important noise mechanisms using equivalent sources and analytical and numerical methods. Readers learn how to manage electrical noise to improve the sensitivity and resolution of communication, navigation, measurement, and other electronic systems. Noise in High-Frequency Circuits and Oscillators has its origins in a university course taught by the authors. As a result, it is thoroughly classroom-tested and carefully structured to facilitate learning. Readers are given a solid foundation in the basics that allows them to proceed to more advanced and sophisticated themes such as computer-aided noise simulation of high-frequency circuits. Following a discussion of mathematical and system-oriented fundamentals, the book covers: * Noise of linear one- and two-ports * Measurement of noise parameters * Noise of diodes and transistors * Parametric circuits * Noise in nonlinear circuits * Noise in oscillators * Quantization noise Each chapter contains a set of numerical and analytical problems that enable readers to apply their newfound knowledge to real-world problems. Solutions are provided in the appendices. With their many years of classroom experience, the authors have designed a book that is ideal for graduate students in engineering and physics. It also addresses key issues and points to solutions for engineers working in the burgeoning satellite and wireless communications industries.

Measurement and Modeling of Silicon Heterostructure Devices

Measurement and Modeling of Silicon Heterostructure Devices PDF Author: John D. Cressler
Publisher: CRC Press
ISBN: 1351834762
Category : Technology & Engineering
Languages : en
Pages : 195

Book Description
When you see a nicely presented set of data, the natural response is: “How did they do that; what tricks did they use; and how can I do that for myself?” Alas, usually, you must simply keep wondering, since such tricks-of- the-trade are usually held close to the vest and rarely divulged. Shamefully ignored in the technical literature, measurement and modeling of high-speed semiconductor devices is a fine art. Robust measuring and modeling at the levels of performance found in modern SiGe devices requires extreme dexterity in the laboratory to obtain reliable data, and then a valid model to fit that data. Drawn from the comprehensive and well-reviewed Silicon Heterostructure Handbook, this volume focuses on measurement and modeling of high-speed silicon heterostructure devices. The chapter authors provide experience-based tricks-of-the-trade and the subtle nuances of measuring and modeling advanced devices, making this an important reference for the semiconductor industry. It includes easy-to-reference appendices covering topics such as the properties of silicon and germanium, the generalized Moll-Ross relations, the integral charge-control model, and sample SiGe HBT compact model parameters.

Compact Hierarchical Bipolar Transistor Modeling with Hicum

Compact Hierarchical Bipolar Transistor Modeling with Hicum PDF Author: Michael Schr”ter
Publisher: World Scientific
ISBN: 981427321X
Category : Technology & Engineering
Languages : en
Pages : 753

Book Description
Compact Hierarchical Bipolar Transistor Modeling with HICUM will be of great practical benefit to professionals from the process development, modeling and circuit design community who are interested in the application of bipolar transistors, which include the SiGe:C HBTs fabricated with existing cutting-edge process technology. The book begins with an overview on the different device designs of modern bipolar transistors, along with their relevant operating conditions; while the subsequent chapter on transistor theory is subdivided into a review of mostly classical theories, brought into context with modern technology, and a chapter on advanced theory that is required for understanding modern device designs. This book aims to provide a solid basis for the understanding of modern compact models.

Low-Frequency Noise in Advanced MOS Devices

Low-Frequency Noise in Advanced MOS Devices PDF Author: Martin von Haartman
Publisher: Springer
ISBN: 9789048112753
Category : Technology & Engineering
Languages : en
Pages : 216

Book Description
This is an introduction to noise, describing fundamental noise sources and basic circuit analysis, discussing characterization of low-frequency noise and offering practical advice that bridges concepts of noise theory and modelling, characterization, CMOS technology and circuits. The text offers the latest research, reviewing the most recent publications and conference presentations. The book concludes with an introduction to noise in analog/RF circuits and describes how low-frequency noise can affect these circuits.