System Identification and Adaptive Control PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download System Identification and Adaptive Control PDF full book. Access full book title System Identification and Adaptive Control by Yiannis Boutalis. Download full books in PDF and EPUB format.

System Identification and Adaptive Control

System Identification and Adaptive Control PDF Author: Yiannis Boutalis
Publisher: Springer Science & Business
ISBN: 3319063642
Category : Technology & Engineering
Languages : en
Pages : 316

Book Description
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

System Identification and Adaptive Control

System Identification and Adaptive Control PDF Author: Yiannis Boutalis
Publisher: Springer Science & Business
ISBN: 3319063642
Category : Technology & Engineering
Languages : en
Pages : 316

Book Description
Presenting current trends in the development and applications of intelligent systems in engineering, this monograph focuses on recent research results in system identification and control. The recurrent neurofuzzy and the fuzzy cognitive network (FCN) models are presented. Both models are suitable for partially-known or unknown complex time-varying systems. Neurofuzzy Adaptive Control contains rigorous proofs of its statements which result in concrete conclusions for the selection of the design parameters of the algorithms presented. The neurofuzzy model combines concepts from fuzzy systems and recurrent high-order neural networks to produce powerful system approximations that are used for adaptive control. The FCN model stems from fuzzy cognitive maps and uses the notion of “concepts” and their causal relationships to capture the behavior of complex systems. The book shows how, with the benefit of proper training algorithms, these models are potent system emulators suitable for use in engineering systems. All chapters are supported by illustrative simulation experiments, while separate chapters are devoted to the potential industrial applications of each model including projects in: • contemporary power generation; • process control and • conventional benchmarking problems. Researchers and graduate students working in adaptive estimation and intelligent control will find Neurofuzzy Adaptive Control of interest both for the currency of its models and because it demonstrates their relevance for real systems. The monograph also shows industrial engineers how to test intelligent adaptive control easily using proven theoretical results.

Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics

Adaptive Identification and Control of Uncertain Systems with Non-smooth Dynamics PDF Author: Jing Na
Publisher: Academic Press
ISBN: 0128136847
Category : Technology & Engineering
Languages : en
Pages : 338

Book Description
Adaptive Identification and Control of Uncertain Systems with Nonsmooth Dynamics reports some of the latest research on modeling, identification and adaptive control for systems with nonsmooth dynamics (e.g., backlash, dead zone, friction, saturation, etc). The authors present recent research results for the modelling and control designs of uncertain systems with nonsmooth dynamics, such as friction, dead-zone, saturation and hysteresis, etc., with particular applications in servo systems. The book is organized into 19 chapters, distributed in five parts concerning the four types of nonsmooth characteristics, namely friction, dead-zone, saturation and hysteresis, respectively. Practical experiments are also included to validate and exemplify the proposed approaches. This valuable resource can help both researchers and practitioners to learn and understand nonlinear adaptive control designs. Academics, engineers and graduate students in the fields of electrical engineering, control systems, mechanical engineering, applied mathematics and computer science can benefit from the book. It can be also used as a reference book on adaptive control for servo systems for students with some background in control engineering. - Explains the latest research outputs on modeling, identification and adaptive control for systems with nonsmooth dynamics - Provides practical application and experimental results for robotic systems, and servo motors

Stochastic Systems

Stochastic Systems PDF Author: P. R. Kumar
Publisher: SIAM
ISBN: 1611974259
Category : Mathematics
Languages : en
Pages : 371

Book Description
Since its origins in the 1940s, the subject of decision making under uncertainty has grown into a diversified area with application in several branches of engineering and in those areas of the social sciences concerned with policy analysis and prescription. These approaches required a computing capacity too expensive for the time, until the ability to collect and process huge quantities of data engendered an explosion of work in the area. This book provides succinct and rigorous treatment of the foundations of stochastic control; a unified approach to filtering, estimation, prediction, and stochastic and adaptive control; and the conceptual framework necessary to understand current trends in stochastic control, data mining, machine learning, and robotics.

Identification and Stochastic Adaptive Control

Identification and Stochastic Adaptive Control PDF Author: Han-fu Chen
Publisher: Springer Science & Business Media
ISBN: 1461204291
Category : Science
Languages : en
Pages : 436

Book Description
Identifying the input-output relationship of a system or discovering the evolutionary law of a signal on the basis of observation data, and applying the constructed mathematical model to predicting, controlling or extracting other useful information constitute a problem that has been drawing a lot of attention from engineering and gaining more and more importance in econo metrics, biology, environmental science and other related areas. Over the last 30-odd years, research on this problem has rapidly developed in various areas under different terms, such as time series analysis, signal processing and system identification. Since the randomness almost always exists in real systems and in observation data, and since the random process is sometimes used to model the uncertainty in systems, it is reasonable to consider the object as a stochastic system. In some applications identification can be carried out off line, but in other cases this is impossible, for example, when the structure or the parameter of the system depends on the sample, or when the system is time-varying. In these cases we have to identify the system on line and to adjust the control in accordance with the model which is supposed to be approaching the true system during the process of identification. This is why there has been an increasing interest in identification and adaptive control for stochastic systems from both theorists and practitioners.

Model Identification and Adaptive Control

Model Identification and Adaptive Control PDF Author: Graham Goodwin
Publisher: Springer Science & Business Media
ISBN: 144710711X
Category : Technology & Engineering
Languages : en
Pages : 302

Book Description
This book is based on a workshop entitled.: Model " Identification and Adap tive Control: From Windsurfing to Telecommunications" held in Sydney, Aus tralia, on December 16, 2000. The workshop was organized in honour of Pro fessor Brian (BDO) Anderson in recognition of his seminal contributions to systems science over the past 4 decades. . The chapters in the book have been written by colleagues, friends and stu dents of Brian Anderson. A central theme of the book is the inter relationship between identification and the use of models in real world applications. This theme has underpinned much of Brian Anderson's own contributions. The book reflects on these contributions as well as makirig important statements about possible future research directions. The subtitle of the book (From Windsurfing to Telecommunications) rec ognizes the fact that many common life experiences, such as those we en counter when learning to ride a windsurfer are models for design methods that can be used on real world advanced technological control problems. In deed, Brian Anderson extensively explored this link in his research work.

Adaptive Control Tutorial

Adaptive Control Tutorial PDF Author: Petros Ioannou
Publisher: SIAM
ISBN: 0898716152
Category : Mathematics
Languages : en
Pages : 401

Book Description
Designed to meet the needs of a wide audience without sacrificing mathematical depth and rigor, Adaptive Control Tutorial presents the design, analysis, and application of a wide variety of algorithms that can be used to manage dynamical systems with unknown parameters. Its tutorial-style presentation of the fundamental techniques and algorithms in adaptive control make it suitable as a textbook. Adaptive Control Tutorial is designed to serve the needs of three distinct groups of readers: engineers and students interested in learning how to design, simulate, and implement parameter estimators and adaptive control schemes without having to fully understand the analytical and technical proofs; graduate students who, in addition to attaining the aforementioned objectives, also want to understand the analysis of simple schemes and get an idea of the steps involved in more complex proofs; and advanced students and researchers who want to study and understand the details of long and technical proofs with an eye toward pursuing research in adaptive control or related topics. The authors achieve these multiple objectives by enriching the book with examples demonstrating the design procedures and basic analysis steps and by detailing their proofs in both an appendix and electronically available supplementary material; online examples are also available. A solution manual for instructors can be obtained by contacting SIAM or the authors. Preface; Acknowledgements; List of Acronyms; Chapter 1: Introduction; Chapter 2: Parametric Models; Chapter 3: Parameter Identification: Continuous Time; Chapter 4: Parameter Identification: Discrete Time; Chapter 5: Continuous-Time Model Reference Adaptive Control; Chapter 6: Continuous-Time Adaptive Pole Placement Control; Chapter 7: Adaptive Control for Discrete-Time Systems; Chapter 8: Adaptive Control of Nonlinear Systems; Appendix; Bibliography; Index

Model Free Adaptive Control

Model Free Adaptive Control PDF Author: Zhongsheng Hou
Publisher: CRC Press
ISBN: 1466594187
Category : Technology & Engineering
Languages : en
Pages : 400

Book Description
Model Free Adaptive Control: Theory and Applications summarizes theory and applications of model-free adaptive control (MFAC). MFAC is a novel adaptive control method for the unknown discrete-time nonlinear systems with time-varying parameters and time-varying structure, and the design and analysis of MFAC merely depend on the measured input and output data of the controlled plant, which makes it more applicable for many practical plants. This book covers new concepts, including pseudo partial derivative, pseudo gradient, pseudo Jacobian matrix, and generalized Lipschitz conditions, etc.; dynamic linearization approaches for nonlinear systems, such as compact-form dynamic linearization, partial-form dynamic linearization, and full-form dynamic linearization; a series of control system design methods, including MFAC prototype, model-free adaptive predictive control, model-free adaptive iterative learning control, and the corresponding stability analysis and typical applications in practice. In addition, some other important issues related to MFAC are also discussed. They are the MFAC for complex connected systems, the modularized controller designs between MFAC and other control methods, the robustness of MFAC, and the symmetric similarity for adaptive control system design. The book is written for researchers who are interested in control theory and control engineering, senior undergraduates and graduated students in engineering and applied sciences, as well as professional engineers in process control.

Adaptive Nonlinear System Identification

Adaptive Nonlinear System Identification PDF Author: Tokunbo Ogunfunmi
Publisher: Springer Science & Business Media
ISBN: 0387686304
Category : Science
Languages : en
Pages : 238

Book Description
Focuses on System Identification applications of the adaptive methods presented. but which can also be applied to other applications of adaptive nonlinear processes. Covers recent research results in the area of adaptive nonlinear system identification from the authors and other researchers in the field.

Model-Reference Adaptive Control

Model-Reference Adaptive Control PDF Author: Nhan T. Nguyen
Publisher: Springer
ISBN: 3319563939
Category : Technology & Engineering
Languages : en
Pages : 453

Book Description
This textbook provides readers with a good working knowledge of adaptive control theory through applications. It is intended for students beginning masters or doctoral courses, and control practitioners wishing to get up to speed in the subject expeditiously. Readers are taught a wide variety of adaptive control techniques starting with simple methods and extending step-by-step to more complex ones. Stability proofs are provided for all adaptive control techniques without obfuscating reader understanding with excessive mathematics. The book begins with standard model-reference adaptive control (MRAC) for first-order, second-order, and multi-input, multi-output systems. Treatment of least-squares parameter estimation and its extension to MRAC follow, helping readers to gain a different perspective on MRAC. Function approximation with orthogonal polynomials and neural networks, and MRAC using neural networks are also covered. Robustness issues connected with MRAC are discussed, helping the student to appreciate potential pitfalls of the technique. This appreciation is encouraged by drawing parallels between various aspects of robustness and linear time-invariant systems wherever relevant. Following on from the robustness problems is material covering robust adaptive control including standard methods and detailed exposition of recent advances, in particular, the author’s work on optimal control modification. Interesting properties of the new method are illustrated in the design of adaptive systems to meet stability margins. This method has been successfully flight-tested on research aircraft, one of various flight-control applications detailed towards the end of the book along with a hybrid adaptive flight control architecture that combines direct MRAC with least-squares indirect adaptive control. In addition to the applications, understanding is encouraged by the use of end-of-chapter exercises and associated MATLAB® files. Readers will need no more than the standard mathematics for basic control theory such as differential equations and matrix algebra; the book covers the foundations of MRAC and the necessary mathematical preliminaries.

Learning-Based Adaptive Control

Learning-Based Adaptive Control PDF Author: Mouhacine Benosman
Publisher: Butterworth-Heinemann
ISBN: 0128031514
Category : Technology & Engineering
Languages : en
Pages : 284

Book Description
Adaptive control has been one of the main problems studied in control theory. The subject is well understood, yet it has a very active research frontier. This book focuses on a specific subclass of adaptive control, namely, learning-based adaptive control. As systems evolve during time or are exposed to unstructured environments, it is expected that some of their characteristics may change. This book offers a new perspective about how to deal with these variations. By merging together Model-Free and Model-Based learning algorithms, the author demonstrates, using a number of mechatronic examples, how the learning process can be shortened and optimal control performance can be reached and maintained. - Includes a good number of Mechatronics Examples of the techniques. - Compares and blends Model-free and Model-based learning algorithms. - Covers fundamental concepts, state-of-the-art research, necessary tools for modeling, and control.