Model Based Control of Air and EGR Into a Diesel Engine PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Model Based Control of Air and EGR Into a Diesel Engine PDF full book. Access full book title Model Based Control of Air and EGR Into a Diesel Engine by . Download full books in PDF and EPUB format.

Model Based Control of Air and EGR Into a Diesel Engine

Model Based Control of Air and EGR Into a Diesel Engine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Book Description


Model Based Control of Air and EGR Into a Diesel Engine

Model Based Control of Air and EGR Into a Diesel Engine PDF Author:
Publisher:
ISBN:
Category :
Languages : en
Pages : 76

Book Description


Modeling and Control of EGR on Marine Two-Stroke Diesel Engines

Modeling and Control of EGR on Marine Two-Stroke Diesel Engines PDF Author: Xavier Llamas
Publisher: Linköping University Electronic Press
ISBN: 9176853683
Category :
Languages : en
Pages : 48

Book Description
The international marine shipping industry is responsible for the transport of around 90% of the total world trade. Low-speed two-stroke diesel engines usually propel the largest trading ships. This engine type choice is mainly motivated by its high fuel efficiency and the capacity to burn cheap low-quality fuels. To reduce the marine freight impact on the environment, the International Maritime Organization (IMO) has introduced stricter limits on the engine pollutant emissions. One of these new restrictions, named Tier III, sets the maximum NOx emissions permitted. New emission reduction technologies have to be developed to fulfill the Tier III limits on two-stroke engines since adjusting the engine combustion alone is not sufficient. There are several promising technologies to achieve the required NOx reductions, Exhaust Gas Recirculation (EGR) is one of them. For automotive applications, EGR is a mature technology, and many of the research findings can be used directly in marine applications. However, there are some differences in marine two-stroke engines, which require further development to apply and control EGR. The number of available engines for testing EGR controllers on ships and test beds is low due to the recent introduction of EGR. Hence, engine simulation models are a good alternative for developing controllers, and many different engine loading scenarios can be simulated without the high costs of running real engine tests. The primary focus of this thesis is the development and validation of models for two-stroke marine engines with EGR. The modeling follows a Mean Value Engine Model (MVEM) approach, which has a low computational complexity and permits faster than real-time simulations suitable for controller testing. A parameterization process that deals with the low measurement data availability, compared to the available data on automotive engines, is also investigated and described. As a result, the proposed model is parameterized to two different two-stroke engines showing a good agreement with the measurements in both stationary and dynamic conditions. Several engine components have been developed. One of these is a new analytic in-cylinder pressure model that captures the influence of the injection and exhaust valve timings without increasing the simulation time. A new compressor model that can extrapolate to low speeds and pressure ratios in a physically sound way is also described. This compressor model is a requirement to be able to simulate low engine loads. Moreover, a novel parameterization algorithm is shown to handle well the model nonlinearities and to obtain a good model agreement with a large number of tested compressor maps. Furthermore, the engine model is complemented with dynamic models for ship and propeller to be able to simulate transient sailing scenarios, where good EGR controller performance is crucial. The model is used to identify the low load area as the most challenging for the controller performance, due to the slower engine air path dynamics. Further low load simulations indicate that sensor bias can be problematic and lead to an undesired black smoke formation, while errors in the parameters of the controller flow estimators are not as critical. This result is valuable because for a newly built engine a proper sensor setup is more straightforward to verify than to get the right parameters for the flow estimators.

Introduction to Modeling and Control of Internal Combustion Engine Systems

Introduction to Modeling and Control of Internal Combustion Engine Systems PDF Author: Lino Guzzella
Publisher: Springer Science & Business Media
ISBN: 3662080036
Category : Technology & Engineering
Languages : en
Pages : 303

Book Description
Internal combustion engines still have a potential for substantial improvements, particularly with regard to fuel efficiency and environmental compatibility. These goals can be achieved with help of control systems. Modeling and Control of Internal Combustion Engines (ICE) addresses these issues by offering an introduction to cost-effective model-based control system design for ICE. The primary emphasis is put on the ICE and its auxiliary devices. Mathematical models for these processes are developed in the text and selected feedforward and feedback control problems are discussed. The appendix contains a summary of the most important controller analysis and design methods, and a case study that analyzes a simplified idle-speed control problem. The book is written for students interested in the design of classical and novel ICE control systems.

Modelling Diesel Combustion

Modelling Diesel Combustion PDF Author: P. A. Lakshminarayanan
Publisher: Springer Science & Business Media
ISBN: 904813885X
Category : Technology & Engineering
Languages : en
Pages : 313

Book Description
Phenomenology of Diesel Combustion and Modeling Diesel is the most efficient combustion engine today and it plays an important role in transport of goods and passengers on land and on high seas. The emissions must be controlled as stipulated by the society without sacrificing the legendary fuel economy of the diesel engines. These important drivers caused innovations in diesel engineering like re-entrant combustion chambers in the piston, lower swirl support and high pressure injection, in turn reducing the ignition delay and hence the nitric oxides. The limits on emissions are being continually reduced. The- fore, the required accuracy of the models to predict the emissions and efficiency of the engines is high. The phenomenological combustion models based on physical and chemical description of the processes in the engine are practical to describe diesel engine combustion and to carry out parametric studies. This is because the injection process, which can be relatively well predicted, has the dominant effect on mixture formation and subsequent course of combustion. The need for improving these models by incorporating new developments in engine designs is explained in Chapter 2. With “model based control programs” used in the Electronic Control Units of the engines, phenomenological models are assuming more importance now because the detailed CFD based models are too slow to be handled by the Electronic Control Units. Experimental work is necessary to develop the basic understanding of the pr- esses.

Optimization and Control of a Dual-loop EGR System in a Modern Diesel Engine

Optimization and Control of a Dual-loop EGR System in a Modern Diesel Engine PDF Author: Yunfan Zhang
Publisher:
ISBN:
Category :
Languages : en
Pages : 0

Book Description
Focusing on the author's research aspects, the intelligent optimization algorithm and advanced control methods of the diesel engine's air path have been proposed in this work. In addition, the simulation platform and the HIL test platform are established for research activities on engine optimization and control. In this thesis, it presents an intelligent transient calibration method using the chaos-enhanced accelerated particle swarm optimization (CAPSO) algorithm. It is a model-based optimization approach. The test results show that the proposed method could locate the global optimal results of the controller parameters within good speed under various working conditions. The engine dynamic response is improved and a measurable drop of engine fuel consumption is acquired. The model predictive control (MPC) is selected for the controllers of DLEGR and VGT in the air-path of a diesel engine. Two MPC-based controllers are developed in this work, they are categorized into linear MPC and nonlinear MPC. Compared with conventional PIO controller, the MPC-based controllers show better reference trajectory tracking performance. Besides, an improvement of the engine fuel economy is obtained. The HIL test indicates the two controllers could be implemented on the real engine.

Engine Modeling and Control

Engine Modeling and Control PDF Author: Rolf Isermann
Publisher: Springer
ISBN: 3642399347
Category : Technology & Engineering
Languages : en
Pages : 646

Book Description
The increasing demands for internal combustion engines with regard to fuel consumption, emissions and driveability lead to more actuators, sensors and complex control functions. A systematic implementation of the electronic control systems requires mathematical models from basic design through simulation to calibration. The book treats physically-based as well as models based experimentally on test benches for gasoline (spark ignition) and diesel (compression ignition) engines and uses them for the design of the different control functions. The main topics are: - Development steps for engine control - Stationary and dynamic experimental modeling - Physical models of intake, combustion, mechanical system, turbocharger, exhaust, cooling, lubrication, drive train - Engine control structures, hardware, software, actuators, sensors, fuel supply, injection system, camshaft - Engine control methods, static and dynamic feedforward and feedback control, calibration and optimization, HiL, RCP, control software development - Control of gasoline engines, control of air/fuel, ignition, knock, idle, coolant, adaptive control functions - Control of diesel engines, combustion models, air flow and exhaust recirculation control, combustion-pressure-based control (HCCI), optimization of feedforward and feedback control, smoke limitation and emission control This book is an introduction to electronic engine management with many practical examples, measurements and research results. It is aimed at advanced students of electrical, mechanical, mechatronic and control engineering and at practicing engineers in the field of combustion engine and automotive engineering.

Model-Based Control of a Turbocharged Diesel Engine with High- and Low-Pressure Exhaust Gas

Model-Based Control of a Turbocharged Diesel Engine with High- and Low-Pressure Exhaust Gas PDF Author: Matthias Patrick Alexander Mrosek
Publisher:
ISBN: 9783186803122
Category :
Languages : de
Pages : 0

Book Description
“Model-Based Control of a Turbocharged Diesel Engine with High- and Low-Pressure Exhaust Gas Recirculation“ presents the complete scope for a model-based control design with regard to the control objective dynamical driving cycle emissions. A semi-physical air path model delivers system properties of the controlled system. Experimental models for stationary and dynamical engine raw emissions are the base for stationary and dynamical optimisations of emissions and engine torque and allow to motivate deviations between stationary and dynamical emission formation. The control concept directly incorporates semi-physical relationships and model parameters of the air path model for control of HP-EGR, LP-EGR and charging pressure. The control performance is rated with quantified stationary and dynamical contributions to the overall driving cycle emissions. All models and control methods have been experimentally parameterised and validated at an engine test bench. ...

Modeling and Model Base Control Design of the VGT-EGR System for Intake Flow Regulation in Diesel Engines

Modeling and Model Base Control Design of the VGT-EGR System for Intake Flow Regulation in Diesel Engines PDF Author: Devesh Upadhyay
Publisher:
ISBN:
Category :
Languages : en
Pages : 588

Book Description


Modeling and Control of Engines and Drivelines

Modeling and Control of Engines and Drivelines PDF Author: Lars Eriksson
Publisher: John Wiley & Sons
ISBN: 1118479998
Category : Technology & Engineering
Languages : en
Pages : 589

Book Description
Control systems have come to play an important role in the performance of modern vehicles with regards to meeting goals on low emissions and low fuel consumption. To achieve these goals, modeling, simulation, and analysis have become standard tools for the development of control systems in the automotive industry. Modeling and Control of Engines and Drivelines provides an up-to-date treatment of the topic from a clear perspective of systems engineering and control systems, which are at the core of vehicle design. This book has three main goals. The first is to provide a thorough understanding of component models as building blocks. It has therefore been important to provide measurements from real processes, to explain the underlying physics, to describe the modeling considerations, and to validate the resulting models experimentally. Second, the authors show how the models are used in the current design of control and diagnosis systems. These system designs are never used in isolation, so the third goal is to provide a complete setting for system integration and evaluation, including complete vehicle models together with actual requirements and driving cycle analysis. Key features: Covers signals, systems, and control in modern vehicles Covers the basic dynamics of internal combustion engines and drivelines Provides a set of standard models and includes examples and case studies Covers turbo- and super-charging, and automotive dependability and diagnosis Accompanied by a web site hosting example models and problems and solutions Modeling and Control of Engines and Drivelines is a comprehensive reference for graduate students and the authors’ close collaboration with the automotive industry ensures that the knowledge and skills that practicing engineers need when analysing and developing new powertrain systems are also covered.

Diesel Engine System Design

Diesel Engine System Design PDF Author: Qianfan Xin
Publisher: Elsevier
ISBN: 0857090836
Category : Technology & Engineering
Languages : en
Pages : 1087

Book Description
Diesel Engine System Design links everything diesel engineers need to know about engine performance and system design in order for them to master all the essential topics quickly and to solve practical design problems. Based on the author's unique experience in the field, it enables engineers to come up with an appropriate specification at an early stage in the product development cycle. Links everything diesel engineers need to know about engine performance and system design featuring essential topics and techniques to solve practical design problems Focuses on engine performance and system integration including important approaches for modelling and analysis Explores fundamental concepts and generic techniques in diesel engine system design incorporating durability, reliability and optimization theories