Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
The Oxford Handbook of Economic Forecasting
Author: Michael P. Clements
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Publisher: OUP USA
ISBN: 0195398645
Category : Business & Economics
Languages : en
Pages : 732
Book Description
Greater data availability has been coupled with developments in statistical theory and economic theory to allow more elaborate and complicated models to be entertained. These include factor models, DSGE models, restricted vector autoregressions, and non-linear models.
Handbook of Volatility Models and Their Applications
Author: Luc Bauwens
Publisher: John Wiley & Sons
ISBN: 0470872519
Category : Business & Economics
Languages : en
Pages : 566
Book Description
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Publisher: John Wiley & Sons
ISBN: 0470872519
Category : Business & Economics
Languages : en
Pages : 566
Book Description
A complete guide to the theory and practice of volatility models in financial engineering Volatility has become a hot topic in this era of instant communications, spawning a great deal of research in empirical finance and time series econometrics. Providing an overview of the most recent advances, Handbook of Volatility Models and Their Applications explores key concepts and topics essential for modeling the volatility of financial time series, both univariate and multivariate, parametric and non-parametric, high-frequency and low-frequency. Featuring contributions from international experts in the field, the book features numerous examples and applications from real-world projects and cutting-edge research, showing step by step how to use various methods accurately and efficiently when assessing volatility rates. Following a comprehensive introduction to the topic, readers are provided with three distinct sections that unify the statistical and practical aspects of volatility: Autoregressive Conditional Heteroskedasticity and Stochastic Volatility presents ARCH and stochastic volatility models, with a focus on recent research topics including mean, volatility, and skewness spillovers in equity markets Other Models and Methods presents alternative approaches, such as multiplicative error models, nonparametric and semi-parametric models, and copula-based models of (co)volatilities Realized Volatility explores issues of the measurement of volatility by realized variances and covariances, guiding readers on how to successfully model and forecast these measures Handbook of Volatility Models and Their Applications is an essential reference for academics and practitioners in finance, business, and econometrics who work with volatility models in their everyday work. The book also serves as a supplement for courses on risk management and volatility at the upper-undergraduate and graduate levels.
Econometrics as a Con Art
Author: Imad A. Moosa
Publisher: Edward Elgar Publishing
ISBN: 1785369954
Category : Business & Economics
Languages : en
Pages : 253
Book Description
Imad Moosa challenges convention with this comprehensive and compelling critique of econometrics, condemning the common practices of misapplied statistical methods in both economics and finance.
Publisher: Edward Elgar Publishing
ISBN: 1785369954
Category : Business & Economics
Languages : en
Pages : 253
Book Description
Imad Moosa challenges convention with this comprehensive and compelling critique of econometrics, condemning the common practices of misapplied statistical methods in both economics and finance.
U-MIDAS
Author: Claudia Foroni
Publisher:
ISBN: 9783865587817
Category :
Languages : en
Pages : 0
Book Description
Publisher:
ISBN: 9783865587817
Category :
Languages : en
Pages : 0
Book Description
The Oxford Handbook of Bayesian Econometrics
Author: John Geweke
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Publisher: Oxford University Press
ISBN: 0191618268
Category : Business & Economics
Languages : en
Pages : 576
Book Description
Bayesian econometric methods have enjoyed an increase in popularity in recent years. Econometricians, empirical economists, and policymakers are increasingly making use of Bayesian methods. This handbook is a single source for researchers and policymakers wanting to learn about Bayesian methods in specialized fields, and for graduate students seeking to make the final step from textbook learning to the research frontier. It contains contributions by leading Bayesians on the latest developments in their specific fields of expertise. The volume provides broad coverage of the application of Bayesian econometrics in the major fields of economics and related disciplines, including macroeconomics, microeconomics, finance, and marketing. It reviews the state of the art in Bayesian econometric methodology, with chapters on posterior simulation and Markov chain Monte Carlo methods, Bayesian nonparametric techniques, and the specialized tools used by Bayesian time series econometricians such as state space models and particle filtering. It also includes chapters on Bayesian principles and methodology.
Handbook of Financial Time Series
Author: Torben Gustav Andersen
Publisher: Springer Science & Business Media
ISBN: 3540712976
Category : Business & Economics
Languages : en
Pages : 1045
Book Description
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
Publisher: Springer Science & Business Media
ISBN: 3540712976
Category : Business & Economics
Languages : en
Pages : 1045
Book Description
The Handbook of Financial Time Series gives an up-to-date overview of the field and covers all relevant topics both from a statistical and an econometrical point of view. There are many fine contributions, and a preamble by Nobel Prize winner Robert F. Engle.
ARCH Models and Financial Applications
Author: Christian Gourieroux
Publisher: Springer Science & Business Media
ISBN: 1461218608
Category : Business & Economics
Languages : en
Pages : 234
Book Description
The classical ARMA models have limitations when applied to the field of financial and monetary economics. Financial time series present nonlinear dynamic characteristics and the ARCH models offer a more adaptive framework for this type of problem. This book surveys the recent work in this area from the perspective of statistical theory, financial models, and applications and will be of interest to theorists and practitioners. From the view point of statistical theory, ARCH models may be considered as specific nonlinear time series models which allow for an exhaustive study of the underlying dynamics. It is possible to reexamine a number of classical questions such as the random walk hypothesis, prediction interval building, presence of latent variables etc., and to test the validity of the previously studied results. There are two main categories of potential applications. One is testing several economic or financial theories concerning the stocks, bonds, and currencies markets, or studying the links between the short and long run. The second is related to the interventions of the banks on the markets, such as choice of optimal portfolios, hedging portfolios, values at risk, and the size and times of block trading.
Publisher: Springer Science & Business Media
ISBN: 1461218608
Category : Business & Economics
Languages : en
Pages : 234
Book Description
The classical ARMA models have limitations when applied to the field of financial and monetary economics. Financial time series present nonlinear dynamic characteristics and the ARCH models offer a more adaptive framework for this type of problem. This book surveys the recent work in this area from the perspective of statistical theory, financial models, and applications and will be of interest to theorists and practitioners. From the view point of statistical theory, ARCH models may be considered as specific nonlinear time series models which allow for an exhaustive study of the underlying dynamics. It is possible to reexamine a number of classical questions such as the random walk hypothesis, prediction interval building, presence of latent variables etc., and to test the validity of the previously studied results. There are two main categories of potential applications. One is testing several economic or financial theories concerning the stocks, bonds, and currencies markets, or studying the links between the short and long run. The second is related to the interventions of the banks on the markets, such as choice of optimal portfolios, hedging portfolios, values at risk, and the size and times of block trading.
Multivariate Time Series Analysis and Applications
Author: William W. S. Wei
Publisher: John Wiley & Sons
ISBN: 1119502853
Category : Mathematics
Languages : en
Pages : 536
Book Description
An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.
Publisher: John Wiley & Sons
ISBN: 1119502853
Category : Mathematics
Languages : en
Pages : 536
Book Description
An essential guide on high dimensional multivariate time series including all the latest topics from one of the leading experts in the field Following the highly successful and much lauded book, Time Series Analysis—Univariate and Multivariate Methods, this new work by William W.S. Wei focuses on high dimensional multivariate time series, and is illustrated with numerous high dimensional empirical time series. Beginning with the fundamentalconcepts and issues of multivariate time series analysis,this book covers many topics that are not found in general multivariate time series books. Some of these are repeated measurements, space-time series modelling, and dimension reduction. The book also looks at vector time series models, multivariate time series regression models, and principle component analysis of multivariate time series. Additionally, it provides readers with information on factor analysis of multivariate time series, multivariate GARCH models, and multivariate spectral analysis of time series. With the development of computers and the internet, we have increased potential for data exploration. In the next few years, dimension will become a more serious problem. Multivariate Time Series Analysis and its Applications provides some initial solutions, which may encourage the development of related software needed for the high dimensional multivariate time series analysis. Written by bestselling author and leading expert in the field Covers topics not yet explored in current multivariate books Features classroom tested material Written specifically for time series courses Multivariate Time Series Analysis and its Applications is designed for an advanced time series analysis course. It is a must-have for anyone studying time series analysis and is also relevant for students in economics, biostatistics, and engineering.
Applied Data Mining for Forecasting Using SAS
Author: Tim Rey
Publisher: SAS Institute
ISBN: 1612900933
Category : Computers
Languages : en
Pages : 336
Book Description
Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input variables for time series regression models in environments when the number of candidates is large, and identifies the correlation structure between selected candidate inputs and the forecast variable. This book is essential for forecasting practitioners who need to understand the practical issues involved in applied forecasting in a business setting. Through numerous real-world examples, the authors demonstrate how to effectively use SAS software to meet their industrial forecasting needs. This book is part of the SAS Press program.
Publisher: SAS Institute
ISBN: 1612900933
Category : Computers
Languages : en
Pages : 336
Book Description
Applied Data Mining for Forecasting Using SAS, by Tim Rey, Arthur Kordon, and Chip Wells, introduces and describes approaches for mining large time series data sets. Written for forecasting practitioners, engineers, statisticians, and economists, the book details how to select useful candidate input variables for time series regression models in environments when the number of candidates is large, and identifies the correlation structure between selected candidate inputs and the forecast variable. This book is essential for forecasting practitioners who need to understand the practical issues involved in applied forecasting in a business setting. Through numerous real-world examples, the authors demonstrate how to effectively use SAS software to meet their industrial forecasting needs. This book is part of the SAS Press program.
Time Series Analysis Univariate and Multivariate Methods
Author: William W. S. Wei
Publisher: Pearson
ISBN: 9780134995366
Category : Time-series analysis
Languages : en
Pages : 648
Book Description
With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.
Publisher: Pearson
ISBN: 9780134995366
Category : Time-series analysis
Languages : en
Pages : 648
Book Description
With its broad coverage of methodology, this comprehensive book is a useful learning and reference tool for those in applied sciences where analysis and research of time series is useful. Its plentiful examples show the operational details and purpose of a variety of univariate and multivariate time series methods. Numerous figures, tables and real-life time series data sets illustrate the models and methods useful for analyzing, modeling, and forecasting data collected sequentially in time. The text also offers a balanced treatment between theory and applications. Time Series Analysis is a thorough introduction to both time-domain and frequency-domain analyses of univariate and multivariate time series methods, with coverage of the most recently developed techniques in the field.